Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-129x-545\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-129xz^2-545z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-10476x-365904\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-7, 8)$ | $1.4394868749092394903214321784$ | $\infty$ |
| $(-6, 7)$ | $2.1065717211952872849852203702$ | $\infty$ |
| $(-5, 0)$ | $0$ | $2$ |
Integral points
\((-7,\pm 8)\), \((-6,\pm 7)\), \( \left(-5, 0\right) \), \((13,\pm 12)\), \((27,\pm 128)\), \((59,\pm 448)\), \((237,\pm 3652)\), \((160173,\pm 64104028)\)
Invariants
| Conductor: | $N$ | = | \( 7232 \) | = | $2^{6} \cdot 113$ |
|
| Discriminant: | $\Delta$ | = | $29622272$ | = | $2^{18} \cdot 113 $ |
|
| j-invariant: | $j$ | = | \( \frac{912673}{113} \) | = | $97^{3} \cdot 113^{-1}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.16354751444289562610664039885$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.87617325639702233801920778334$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8890032334305703$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.948456385622897$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.6373598839461326280255714566$ |
|
| Real period: | $\Omega$ | ≈ | $1.4272030384140633483811760834$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $3.7640480397592819795019451632 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.764048040 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.427203 \cdot 2.637360 \cdot 4}{2^2} \\ & \approx 3.764048040\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1536 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{8}^{*}$ | additive | 1 | 6 | 18 | 0 |
| $113$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.21 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 904 = 2^{3} \cdot 113 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 470 & 1 \\ 295 & 4 \end{array}\right),\left(\begin{array}{rr} 451 & 896 \\ 0 & 903 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 679 & 8 \\ 452 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 8 \\ 28 & 75 \end{array}\right),\left(\begin{array}{rr} 5 & 8 \\ 48 & 77 \end{array}\right),\left(\begin{array}{rr} 897 & 8 \\ 896 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[904])$ is a degree-$5170937856$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/904\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 113 \) |
| $113$ | split multiplicative | $114$ | \( 64 = 2^{6} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 7232.a
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 113.a1, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{113}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.0.28928.3 | \(\Z/4\Z\) | not in database |
| $8$ | 8.0.10685471850496.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.8527674378686464.10 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.10685471850496.13 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 113 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | ord | ss | ss | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | split |
| $\lambda$-invariant(s) | - | 4 | 4 | 2,2 | 2,2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 |
| $\mu$-invariant(s) | - | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.