Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2=x^3-x^2-3593x-100127\) | (homogenize, simplify) | 
| \(y^2z=x^3-x^2z-3593xz^2-100127z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-291060x-73865736\) | (homogenize, minimize) | 
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 72128 \) | = | $2^{6} \cdot 7^{2} \cdot 23$ |  | 
| Discriminant: | $\Delta$ | = | $-1465789832192$ | = | $-1 \cdot 2^{10} \cdot 7^{6} \cdot 23^{3} $ |  | 
| j-invariant: | $j$ | = | \( -\frac{42592000}{12167} \) | = | $-1 \cdot 2^{8} \cdot 5^{3} \cdot 11^{3} \cdot 23^{-3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0495654884260524464233716162$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.50101223656822529731033152340$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $0.87184842279915$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.269682750081016$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 0$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |  | 
| Real period: | $\Omega$ | ≈ | $0.30382190580359025586693123053$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 6 $ = $ 1\cdot2\cdot3 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |  | 
| Special value: | $ L(E,1)$ | ≈ | $1.8229314348215415352015873832 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |  | 
BSD formula
$$\begin{aligned} 1.822931435 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.303822 \cdot 1.000000 \cdot 6}{1^2} \\ & \approx 1.822931435\end{aligned}$$
Modular invariants
Modular form 72128.2.a.x
For more coefficients, see the Downloads section to the right.
| Modular degree: | 69120 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_0^{*}$ | additive | -1 | 6 | 10 | 0 | 
| $7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 | 
| $23$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $3$ | 3B | 3.4.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3864 = 2^{3} \cdot 3 \cdot 7 \cdot 23 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 2234 & 2877 \\ 1183 & 3319 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 2857 & 3318 \\ 567 & 2227 \end{array}\right),\left(\begin{array}{rr} 1931 & 0 \\ 0 & 3863 \end{array}\right),\left(\begin{array}{rr} 2899 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3859 & 6 \\ 3858 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1103 & 0 \\ 0 & 3863 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 3445 & 3318 \\ 3444 & 3319 \end{array}\right)$.
The torsion field $K:=\Q(E[3864])$ is a degree-$2481918050304$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3864\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 1127 = 7^{2} \cdot 23 \) | 
| $3$ | good | $2$ | \( 3136 = 2^{6} \cdot 7^{2} \) | 
| $7$ | additive | $26$ | \( 1472 = 2^{6} \cdot 23 \) | 
| $23$ | split multiplicative | $24$ | \( 3136 = 2^{6} \cdot 7^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 72128bz
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 92a2, its twist by $56$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-42}) \) | \(\Z/3\Z\) | not in database | 
| $3$ | 3.1.23.1 | \(\Z/2\Z\) | not in database | 
| $6$ | 6.0.12167.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $6$ | 6.2.512096256.2 | \(\Z/3\Z\) | not in database | 
| $6$ | 6.0.2508323328.6 | \(\Z/6\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/4\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $18$ | 18.0.57926878544830055676705853212970611927561535488.1 | \(\Z/9\Z\) | not in database | 
| $18$ | 18.2.19880248929872135736737740854657024.1 | \(\Z/6\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | ss | add | ss | ord | ord | ord | split | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | 0 | 0,0 | - | 0,0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 
| $\mu$-invariant(s) | - | 1 | 0,0 | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
