Properties

Label 7150j
Number of curves $1$
Conductor $7150$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 7150j1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7150j do not have complex multiplication.

Modular form 7150.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + 3 q^{3} + q^{4} - 3 q^{6} + 3 q^{7} - q^{8} + 6 q^{9} + q^{11} + 3 q^{12} - q^{13} - 3 q^{14} + q^{16} + q^{17} - 6 q^{18} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 7150j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7150.n1 7150j1 \([1, -1, 0, -76417, 16583741]\) \(-3158470573163361/5758438400000\) \(-89975600000000000\) \([]\) \(149760\) \(1.9433\) \(\Gamma_0(N)\)-optimal