Properties

Label 7150g
Number of curves $4$
Conductor $7150$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 7150g have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7150g do not have complex multiplication.

Modular form 7150.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + 2 q^{3} + q^{4} - 2 q^{6} + 4 q^{7} - q^{8} + q^{9} + q^{11} + 2 q^{12} - q^{13} - 4 q^{14} + q^{16} + 6 q^{17} - q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 7150g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7150.m4 7150g1 \([1, 1, 0, 2600, 0]\) \(124326214271/71980480\) \(-1124695000000\) \([2]\) \(18432\) \(1.0018\) \(\Gamma_0(N)\)-optimal
7150.m3 7150g2 \([1, 1, 0, -10400, -13000]\) \(7962857630209/4606058600\) \(71969665625000\) \([2]\) \(36864\) \(1.3484\)  
7150.m2 7150g3 \([1, 1, 0, -35900, -2810500]\) \(-327495950129089/26547449500\) \(-414803898437500\) \([2]\) \(55296\) \(1.5511\)  
7150.m1 7150g4 \([1, 1, 0, -585150, -172528750]\) \(1418098748958579169/8307406250\) \(129803222656250\) \([2]\) \(110592\) \(1.8977\)