Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-289219008x-1892824300512\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-289219008xz^2-1892824300512z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-23426739675x-1379798634854250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-9697, 0)$ | $0$ | $2$ |
Integral points
\( \left(-9697, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 71400 \) | = | $2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $714146015214828000000000$ | = | $2^{11} \cdot 3^{7} \cdot 5^{9} \cdot 7^{10} \cdot 17^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{83609231549925663172082}{22317062975463375} \) | = | $2 \cdot 3^{-7} \cdot 5^{-3} \cdot 7^{-10} \cdot 17^{-2} \cdot 34706281^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.5609776119199674229113624607$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.1208737401896340353118533494$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0097143368729002$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.268911432597759$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.036610006249900530100953019295$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 560 $ = $ 1\cdot7\cdot2^{2}\cdot( 2 \cdot 5 )\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $5.1254008749860742141334227013 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 5.125400875 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.036610 \cdot 1.000000 \cdot 560}{2^2} \\ & \approx 5.125400875\end{aligned}$$
Modular invariants
Modular form 71400.2.a.dw
For more coefficients, see the Downloads section to the right.
Modular degree: | 15482880 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II^{*}$ | additive | -1 | 3 | 11 | 0 |
$3$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
$5$ | $4$ | $I_{3}^{*}$ | additive | 1 | 2 | 9 | 3 |
$7$ | $10$ | $I_{10}$ | split multiplicative | -1 | 1 | 10 | 10 |
$17$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 14280 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 14277 & 4 \\ 14276 & 5 \end{array}\right),\left(\begin{array}{rr} 5356 & 8929 \\ 1785 & 12496 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 5714 & 1 \\ 11423 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 8401 & 4 \\ 2522 & 9 \end{array}\right),\left(\begin{array}{rr} 4762 & 1 \\ 4759 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 7139 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 6121 & 4 \\ 12242 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[14280])$ is a degree-$465740884869120$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/14280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 75 = 3 \cdot 5^{2} \) |
$3$ | split multiplicative | $4$ | \( 23800 = 2^{3} \cdot 5^{2} \cdot 7 \cdot 17 \) |
$5$ | additive | $18$ | \( 408 = 2^{3} \cdot 3 \cdot 17 \) |
$7$ | split multiplicative | $8$ | \( 3400 = 2^{3} \cdot 5^{2} \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 4200 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 71400do
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 14280j2, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{30}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.6797280.5 | \(\Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 17 |
---|---|---|---|---|---|
Reduction type | add | split | add | split | nonsplit |
$\lambda$-invariant(s) | - | 7 | - | 3 | 0 |
$\mu$-invariant(s) | - | 0 | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 11$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.