Show commands: SageMath
Rank
The elliptic curves in class 71400d have rank \(0\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 71400d do not have complex multiplication.Modular form 71400.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 71400d
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
71400.bp4 | 71400d1 | \([0, -1, 0, -17666108, 28851244212]\) | \(-152435594466395827792/1646846627220711\) | \(-6587386508882844000000\) | \([2]\) | \(4423680\) | \(3.0026\) | \(\Gamma_0(N)\)-optimal |
71400.bp3 | 71400d2 | \([0, -1, 0, -283386608, 1836282085212]\) | \(157304700372188331121828/18069292138401\) | \(289108674214416000000\) | \([2, 2]\) | \(8847360\) | \(3.3492\) | |
71400.bp2 | 71400d3 | \([0, -1, 0, -284115608, 1826360395212]\) | \(79260902459030376659234/842751810121431609\) | \(26968057923885811488000000\) | \([2]\) | \(17694720\) | \(3.6957\) | |
71400.bp1 | 71400d4 | \([0, -1, 0, -4534185608, 117517526071212]\) | \(322159999717985454060440834/4250799\) | \(136025568000000\) | \([2]\) | \(17694720\) | \(3.6957\) |