Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-283386608x+1836282085212\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-283386608xz^2+1836282085212z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-22954315275x+1338580777173750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(9717, 0)$ | $0$ | $2$ |
$(9722, 0)$ | $0$ | $2$ |
Integral points
\( \left(-19438, 0\right) \), \( \left(9717, 0\right) \), \( \left(9722, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 71400 \) | = | $2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $289108674214416000000$ | = | $2^{10} \cdot 3^{12} \cdot 5^{6} \cdot 7^{6} \cdot 17^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{157304700372188331121828}{18069292138401} \) | = | $2^{2} \cdot 3^{-12} \cdot 7^{-6} \cdot 17^{-2} \cdot 73^{3} \cdot 465841^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.3491526714441708120604570206$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.9668110647604995335790505861$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0420651643816399$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.263442916316939$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.13403499917340422992758348510$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 192 $ = $ 2\cdot2\cdot2^{2}\cdot( 2 \cdot 3 )\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.6084199900808507591310018212 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.608419990 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.134035 \cdot 1.000000 \cdot 192}{4^2} \\ & \approx 1.608419990\end{aligned}$$
Modular invariants
Modular form 71400.2.a.bp
For more coefficients, see the Downloads section to the right.
Modular degree: | 8847360 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III^{*}$ | additive | 1 | 3 | 10 | 0 |
$3$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
$5$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$7$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$17$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.12.0.3 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4760 = 2^{3} \cdot 5 \cdot 7 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 2381 & 3810 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3131 & 3810 \\ 2990 & 951 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1903 & 0 \\ 0 & 4759 \end{array}\right),\left(\begin{array}{rr} 1191 & 3810 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4757 & 4 \\ 4756 & 5 \end{array}\right),\left(\begin{array}{rr} 451 & 3810 \\ 3190 & 951 \end{array}\right)$.
The torsion field $K:=\Q(E[4760])$ is a degree-$2425733775360$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4760\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 25 = 5^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 3400 = 2^{3} \cdot 5^{2} \cdot 17 \) |
$5$ | additive | $14$ | \( 2856 = 2^{3} \cdot 3 \cdot 7 \cdot 17 \) |
$7$ | split multiplicative | $8$ | \( 10200 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 4200 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 71400.bp
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2856.c3, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$4$ | \(\Q(\sqrt{-5}, \sqrt{-119})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{5})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-10}, \sqrt{238})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 17 |
---|---|---|---|---|---|
Reduction type | add | nonsplit | add | split | nonsplit |
$\lambda$-invariant(s) | - | 4 | - | 1 | 0 |
$\mu$-invariant(s) | - | 0 | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.