Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x^2+349916x+20936165\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+x^2z+349916xz^2+20936165z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+453491109x+969995355894\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{4}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(541, 18937)$ | $0$ | $4$ |
Integral points
\( \left(541, 18937\right) \), \( \left(541, -19479\right) \)
Invariants
| Conductor: | $N$ | = | \( 714 \) | = | $2 \cdot 3 \cdot 7 \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $-2928751705237796928$ | = | $-1 \cdot 2^{6} \cdot 3^{4} \cdot 7^{16} \cdot 17 $ |
|
| j-invariant: | $j$ | = | \( \frac{4738217997934888496063}{2928751705237796928} \) | = | $2^{-6} \cdot 3^{-4} \cdot 7^{-16} \cdot 17^{-1} \cdot 47^{3} \cdot 191^{3} \cdot 1871^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2325553790430451078261910604$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.2325553790430451078261910604$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.06742381122777$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.595622742658277$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.15689245972130971411926011680$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 192 $ = $ ( 2 \cdot 3 )\cdot2\cdot2^{4}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.8827095166557165694311214016 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.882709517 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.156892 \cdot 1.000000 \cdot 192}{4^2} \\ & \approx 1.882709517\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 15360 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
| $3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $7$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
| $17$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.96.0.103 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 272 = 2^{4} \cdot 17 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 257 & 16 \\ 256 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 13 & 16 \\ 60 & 121 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 178 & 211 \\ 127 & 158 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 268 & 269 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 174 & 259 \end{array}\right),\left(\begin{array}{rr} 48 & 5 \\ 35 & 258 \end{array}\right)$.
The torsion field $K:=\Q(E[272])$ is a degree-$10027008$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/272\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 17 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 119 = 7 \cdot 17 \) |
| $7$ | split multiplicative | $8$ | \( 102 = 2 \cdot 3 \cdot 17 \) |
| $17$ | split multiplicative | $18$ | \( 42 = 2 \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 714.f
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-17}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/8\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-34}) \) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{2}, \sqrt{-17})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $4$ | 4.2.34816.2 | \(\Z/16\Z\) | not in database |
| $8$ | 8.0.6179217664.3 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.1581879721984.17 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.101240302206976.26 | \(\Z/16\Z\) | not in database |
| $8$ | 8.0.1401249857536.7 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $8$ | 8.2.35523982503387.4 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/32\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 7 | 17 |
|---|---|---|---|---|
| Reduction type | split | nonsplit | split | split |
| $\lambda$-invariant(s) | 3 | 4 | 3 | 1 |
| $\mu$-invariant(s) | 2 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.