Show commands:
SageMath
E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 71058l
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
71058.m2 | 71058l1 | \([1, 0, 0, -5118321, 4456008297]\) | \(14828809162780998661814929/2048285853033578496\) | \(2048285853033578496\) | \([7]\) | \(2304960\) | \(2.5311\) | \(\Gamma_0(N)\)-optimal |
71058.m1 | 71058l2 | \([1, 0, 0, -307716981, -2077644355683]\) | \(3222389999241959100048447349969/81236880320586561709476\) | \(81236880320586561709476\) | \([]\) | \(16134720\) | \(3.5040\) |
Rank
sage: E.rank()
The elliptic curves in class 71058l have rank \(1\).
Complex multiplication
The elliptic curves in class 71058l do not have complex multiplication.Modular form 71058.2.a.l
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.