Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-30002700x+54887546000\)
|
(homogenize, simplify) |
\(y^2z=x^3-30002700xz^2+54887546000z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-30002700x+54887546000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(2170, 0)$ | $0$ | $2$ |
$(4060, 0)$ | $0$ | $2$ |
Integral points
\( \left(-6230, 0\right) \), \( \left(2170, 0\right) \), \( \left(4060, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 705600 \) | = | $2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$ |
|
Discriminant: | $\Delta$ | = | $427004953041945600000000$ | = | $2^{16} \cdot 3^{10} \cdot 5^{8} \cdot 7^{10} $ |
|
j-invariant: | $j$ | = | \( \frac{34008619684}{4862025} \) | = | $2^{2} \cdot 3^{-4} \cdot 5^{-2} \cdot 7^{-4} \cdot 13^{3} \cdot 157^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.2598952488574377303719150103$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.0087188330320822989315935248956$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9425087047318286$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.697773714958717$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.090536593980734385239282947241$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 256 $ = $ 2^{2}\cdot2^{2}\cdot2^{2}\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.4485855036917501638285271559 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.448585504 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.090537 \cdot 1.000000 \cdot 256}{4^2} \\ & \approx 1.448585504\end{aligned}$$
Modular invariants
Modular form 705600.2.a.bwv
For more coefficients, see the Downloads section to the right.
Modular degree: | 75497472 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{6}^{*}$ | additive | -1 | 6 | 16 | 0 |
$3$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
$5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
$7$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.24.0.12 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 833 & 8 \\ 832 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 559 & 836 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 836 & 837 \end{array}\right),\left(\begin{array}{rr} 161 & 838 \\ 186 & 5 \end{array}\right),\left(\begin{array}{rr} 839 & 626 \\ 836 & 193 \end{array}\right),\left(\begin{array}{rr} 837 & 202 \\ 218 & 21 \end{array}\right),\left(\begin{array}{rr} 599 & 832 \\ 716 & 807 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$371589120$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 11025 = 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
$3$ | additive | $8$ | \( 78400 = 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
$5$ | additive | $18$ | \( 28224 = 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
$7$ | additive | $32$ | \( 14400 = 2^{6} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
4, 2, 4, 2 and 2.
Its isogeny class 705600.bwv
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 840.d2, its twist by $-840$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.