Properties

Label 705600.btp
Number of curves $2$
Conductor $705600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("btp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 705600.btp have rank \(1\).

Complex multiplication

The elliptic curves in class 705600.btp do not have complex multiplication.

Modular form 705600.2.a.btp

Copy content sage:E.q_eigenform(10)
 
\(q + 4 q^{11} - 6 q^{13} - 4 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 705600.btp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height
705600.btp1 \([0, 0, 0, -3615626700, -83499528294000]\) \(551105805571803/1376829440\) \(13059291747859908526080000000\) \([2]\) \(743178240\) \(4.2723\)
705600.btp2 \([0, 0, 0, -2260874700, -146828765286000]\) \(-134745327251163/903920796800\) \(-8573731109620370413977600000000\) \([2]\) \(1486356480\) \(4.6189\)