Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-995043x-396371486\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-995043xz^2-396371486z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-995043x-396371486\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(4655, 309582)$ | $2.2542231648526864448987732701$ | $\infty$ |
Integral points
\((4655,\pm 309582)\)
Invariants
| Conductor: | $N$ | = | \( 7056 \) | = | $2^{4} \cdot 3^{2} \cdot 7^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-4818707323144372224$ | = | $-1 \cdot 2^{19} \cdot 3^{13} \cdot 7^{8} $ |
|
| j-invariant: | $j$ | = | \( -\frac{6329617441}{279936} \) | = | $-1 \cdot 2^{-7} \cdot 3^{-7} \cdot 7 \cdot 967^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3498849629083107785302448179$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.18984179468923157998817841765$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.032335220248665$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.994252617526152$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.2542231648526864448987732701$ |
|
| Real period: | $\Omega$ | ≈ | $0.075385467085302682385699667347$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 24 $ = $ 2\cdot2^{2}\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.0784559887262968762683008998 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.078455989 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.075385 \cdot 2.254223 \cdot 24}{1^2} \\ & \approx 4.078455989\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 112896 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{11}^{*}$ | additive | -1 | 4 | 19 | 7 |
| $3$ | $4$ | $I_{7}^{*}$ | additive | -1 | 2 | 13 | 7 |
| $7$ | $3$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $7$ | 7B.6.1 | 7.24.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 168 = 2^{3} \cdot 3 \cdot 7 \), index $96$, genus $2$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 104 & 161 \\ 119 & 6 \end{array}\right),\left(\begin{array}{rr} 8 & 7 \\ 77 & 162 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 155 & 14 \\ 154 & 15 \end{array}\right),\left(\begin{array}{rr} 125 & 70 \\ 0 & 53 \end{array}\right),\left(\begin{array}{rr} 41 & 154 \\ 0 & 167 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[168])$ is a degree-$1548288$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/168\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 441 = 3^{2} \cdot 7^{2} \) |
| $3$ | additive | $8$ | \( 784 = 2^{4} \cdot 7^{2} \) |
| $7$ | additive | $26$ | \( 144 = 2^{4} \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
7.
Its isogeny class 7056.w
consists of 2 curves linked by isogenies of
degree 7.
Twists
The minimal quadratic twist of this elliptic curve is 294.f1, its twist by $-84$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-21}) \) | \(\Z/7\Z\) | not in database |
| $3$ | 3.1.1176.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.33191424.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.464679936.1 | \(\Z/14\Z\) | not in database |
| $8$ | 8.2.435537865728.5 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/14\Z\) | not in database |
| $16$ | deg 16 | \(\Z/21\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | ord | add | ord | ss | ord | ord | ord | ord | ord | ord | ss | ord | ord |
| $\lambda$-invariant(s) | - | - | 3 | - | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 3,1 | 1 | 1 |
| $\mu$-invariant(s) | - | - | 0 | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.