sage: E = EllipticCurve([0, 0, 0, -4116, 84035])
gp: E = ellinit([0, 0, 0, -4116, 84035])
magma: E := EllipticCurve([0, 0, 0, -4116, 84035]);
oscar: E = elliptic_curve([0, 0, 0, -4116, 84035])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z / 2 Z \Z/{2}\Z Z / 2 Z
magma: MordellWeilGroup(E);
( 49 , 0 ) \left(49, 0\right) ( 4 9 , 0 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
7056 7056 7 0 5 6 = 2 4 ⋅ 3 2 ⋅ 7 2 2^{4} \cdot 3^{2} \cdot 7^{2} 2 4 ⋅ 3 2 ⋅ 7 2
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
1412053416144 1412053416144 1 4 1 2 0 5 3 4 1 6 1 4 4 = 2 4 ⋅ 3 7 ⋅ 7 9 2^{4} \cdot 3^{7} \cdot 7^{9} 2 4 ⋅ 3 7 ⋅ 7 9
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
16384 3 \frac{16384}{3} 3 1 6 3 8 4 = 2 14 ⋅ 3 − 1 2^{14} \cdot 3^{-1} 2 1 4 ⋅ 3 − 1
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 1.0499073609555708007715587494 1.0499073609555708007715587494 1 . 0 4 9 9 0 7 3 6 0 9 5 5 5 7 0 8 0 0 7 7 1 5 5 8 7 4 9 4
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 1.1898804553566174602274891338 -1.1898804553566174602274891338 − 1 . 1 8 9 8 8 0 4 5 5 3 5 6 6 1 7 4 6 0 2 2 7 4 8 9 1 3 3 8
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.0370424407259895 1.0370424407259895 1 . 0 3 7 0 4 2 4 4 0 7 2 5 9 8 9 5
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 4.128077957673095 4.128077957673095 4 . 1 2 8 0 7 7 9 5 7 6 7 3 0 9 5
Analytic rank :
r a n r_{\mathrm{an}} r a n = 0 0 0
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 0 0 0
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) = 1 1 1
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 0.81169851927054192690901519354 0.81169851927054192690901519354 0 . 8 1 1 6 9 8 5 1 9 2 7 0 5 4 1 9 2 6 9 0 9 0 1 5 1 9 3 5 4
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 4 4 4
= 1 ⋅ 2 ⋅ 2 1\cdot2\cdot2 1 ⋅ 2 ⋅ 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ( E , 1 ) L(E,1) L ( E , 1 ) ≈ 0.81169851927054192690901519354 0.81169851927054192690901519354 0 . 8 1 1 6 9 8 5 1 9 2 7 0 5 4 1 9 2 6 9 0 9 0 1 5 1 9 3 5 4
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
=
1 1 1
(exact )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
0.811698519 ≈ L ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.811699 ⋅ 1.000000 ⋅ 4 2 2 ≈ 0.811698519 \begin{aligned} 0.811698519 \approx L(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.811699 \cdot 1.000000 \cdot 4}{2^2} \\ & \approx 0.811698519\end{aligned} 0 . 8 1 1 6 9 8 5 1 9 ≈ L ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 8 1 1 6 9 9 ⋅ 1 . 0 0 0 0 0 0 ⋅ 4 ≈ 0 . 8 1 1 6 9 8 5 1 9
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([0, 0, 0, -4116, 84035]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([0, 0, 0, -4116, 84035]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
7056.2.a.n
q − 2 q 5 + 2 q 11 − 4 q 13 − 6 q 17 − 8 q 19 + O ( q 20 ) q - 2 q^{5} + 2 q^{11} - 4 q^{13} - 6 q^{17} - 8 q^{19} + O(q^{20}) q − 2 q 5 + 2 q 1 1 − 4 q 1 3 − 6 q 1 7 − 8 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 3 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[1, 2, 2, 5], [81, 4, 80, 5], [58, 1, 55, 0], [3, 4, 8, 11], [40, 1, 11, 0], [1, 4, 0, 1], [25, 64, 20, 63], [1, 0, 4, 1]]
GL(2,Integers(84)).subgroup(gens)
magma: Gens := [[1, 2, 2, 5], [81, 4, 80, 5], [58, 1, 55, 0], [3, 4, 8, 11], [40, 1, 11, 0], [1, 4, 0, 1], [25, 64, 20, 63], [1, 0, 4, 1]];
sub<GL(2,Integers(84))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 84 = 2 2 ⋅ 3 ⋅ 7 84 = 2^{2} \cdot 3 \cdot 7 8 4 = 2 2 ⋅ 3 ⋅ 7 , index 12 12 1 2 , genus 0 0 0 , and generators
( 1 2 2 5 ) , ( 81 4 80 5 ) , ( 58 1 55 0 ) , ( 3 4 8 11 ) , ( 40 1 11 0 ) , ( 1 4 0 1 ) , ( 25 64 20 63 ) , ( 1 0 4 1 ) \left(\begin{array}{rr}
1 & 2 \\
2 & 5
\end{array}\right),\left(\begin{array}{rr}
81 & 4 \\
80 & 5
\end{array}\right),\left(\begin{array}{rr}
58 & 1 \\
55 & 0
\end{array}\right),\left(\begin{array}{rr}
3 & 4 \\
8 & 11
\end{array}\right),\left(\begin{array}{rr}
40 & 1 \\
11 & 0
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
25 & 64 \\
20 & 63
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
4 & 1
\end{array}\right) ( 1 2 2 5 ) , ( 8 1 8 0 4 5 ) , ( 5 8 5 5 1 0 ) , ( 3 8 4 1 1 ) , ( 4 0 1 1 1 0 ) , ( 1 0 4 1 ) , ( 2 5 2 0 6 4 6 3 ) , ( 1 4 0 1 ) .
The torsion field K : = Q ( E [ 84 ] ) K:=\Q(E[84]) K : = Q ( E [ 8 4 ] ) is a degree-774144 774144 7 7 4 1 4 4 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 84 Z ) \GL_2(\Z/84\Z) GL 2 ( Z / 8 4 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
additive
2 2 2
63 = 3 2 ⋅ 7 63 = 3^{2} \cdot 7 6 3 = 3 2 ⋅ 7
3 3 3
additive
8 8 8
784 = 2 4 ⋅ 7 2 784 = 2^{4} \cdot 7^{2} 7 8 4 = 2 4 ⋅ 7 2
7 7 7
additive
20 20 2 0
144 = 2 4 ⋅ 3 2 144 = 2^{4} \cdot 3^{2} 1 4 4 = 2 4 ⋅ 3 2
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 7056.n
consists of 2 curves linked by isogenies of
degree 2.
The minimal quadratic twist of this elliptic curve is
588.b2 , its twist by − 84 -84 − 8 4 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 21 ) \Q(\sqrt{21}) Q ( 2 1 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
4 4 4
4.4.65856.1
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
8 8 8
8.0.351298031616.35
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
8.8.39033114624.1
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
8.2.21341355420672.13
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
All Iwasawa λ \lambda λ and μ \mu μ -invariants for primes p ≥ 3 p\ge
3 p ≥ 3 of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
All p p p -adic regulators are identically 1 1 1 since the rank is 0 0 0 .