Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2-39717x-3063096\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z-39717xz^2-3063096z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-51473907x-142139701746\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(6701179180/1951609, 543037126919954/2726397773)$ | $22.658627174775048404870755373$ | $\infty$ |
| $(-116, 58)$ | $0$ | $2$ |
Integral points
\( \left(-116, 58\right) \)
Invariants
| Conductor: | $N$ | = | \( 70395 \) | = | $3 \cdot 5 \cdot 13 \cdot 19^{2}$ |
|
| Discriminant: | $\Delta$ | = | $247696563465$ | = | $3^{4} \cdot 5 \cdot 13 \cdot 19^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{147281603041}{5265} \) | = | $3^{-4} \cdot 5^{-1} \cdot 13^{-1} \cdot 5281^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2753421962579634981442463466$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.19687729332525673186026736934$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9386701274898751$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.886644166041803$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $22.658627174775048404870755373$ |
|
| Real period: | $\Omega$ | ≈ | $0.33818547686960497897655929801$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot1\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.6628186363118899456822082950 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.662818636 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.338185 \cdot 22.658627 \cdot 4}{2^2} \\ & \approx 7.662818636\end{aligned}$$
Modular invariants
Modular form 70395.2.a.n
For more coefficients, see the Downloads section to the right.
| Modular degree: | 165888 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $19$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.24.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 118560 = 2^{5} \cdot 3 \cdot 5 \cdot 13 \cdot 19 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 73664 & 81149 \\ 88939 & 64962 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 72961 & 93632 \\ 31274 & 12959 \end{array}\right),\left(\begin{array}{rr} 43679 & 0 \\ 0 & 118559 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 28 \\ 68 & 381 \end{array}\right),\left(\begin{array}{rr} 23 & 18 \\ 115998 & 116555 \end{array}\right),\left(\begin{array}{rr} 42903 & 87362 \\ 5434 & 43663 \end{array}\right),\left(\begin{array}{rr} 118529 & 32 \\ 118528 & 33 \end{array}\right),\left(\begin{array}{rr} 91543 & 68666 \\ 109782 & 72011 \end{array}\right),\left(\begin{array}{rr} 117136 & 24985 \\ 109079 & 53106 \end{array}\right)$.
The torsion field $K:=\Q(E[118560])$ is a degree-$38064043642060800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/118560\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 23465 = 5 \cdot 13 \cdot 19^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 23465 = 5 \cdot 13 \cdot 19^{2} \) |
| $5$ | split multiplicative | $6$ | \( 14079 = 3 \cdot 13 \cdot 19^{2} \) |
| $13$ | nonsplit multiplicative | $14$ | \( 5415 = 3 \cdot 5 \cdot 19^{2} \) |
| $19$ | additive | $182$ | \( 195 = 3 \cdot 5 \cdot 13 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4, 8 and 16.
Its isogeny class 70395.n
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 195.a6, its twist by $-19$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{65}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-1235}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-19}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-19}, \sqrt{65})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{5}, \sqrt{-19})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{13}, \sqrt{-19})\) | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.2326311300625.5 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.50951800630809.3 | \(\Z/16\Z\) | not in database |
| $8$ | 8.0.31844875394255625.6 | \(\Z/16\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | nonsplit | split | ss | ord | nonsplit | ord | add | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 3 | 1 | 2 | 1,1 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.