y2+xy=x3−x2−472266x+125037036
|
(homogenize, simplify) |
y2z+xyz=x3−x2z−472266xz2+125037036z3
|
(dehomogenize, simplify) |
y2=x3−7556259x+7994814046
|
(homogenize, minimize) |
sage:E = EllipticCurve([1, -1, 0, -472266, 125037036])
gp:E = ellinit([1, -1, 0, -472266, 125037036])
magma:E := EllipticCurve([1, -1, 0, -472266, 125037036]);
oscar:E = elliptic_curve([1, -1, 0, -472266, 125037036])
sage:E.short_weierstrass_model()
magma:WeierstrassModel(E);
oscar:short_weierstrass_model(E)
Z/3Z
magma:MordellWeilGroup(E);
(397,−198), (397,−199)
sage:E.integral_points()
magma:IntegralPoints(E);
Invariants
| Conductor: |
N |
= |
702 | = | 2⋅33⋅13 |
sage:E.conductor().factor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
oscar:conductor(E)
|
| Discriminant: |
Δ |
= |
−328536 | = | −1⋅23⋅35⋅132 |
sage:E.discriminant().factor()
gp:E.disc
magma:Discriminant(E);
oscar:discriminant(E)
|
| j-invariant: |
j |
= |
−135247937788722586831331 | = | −1⋅2−3⋅3⋅13−2⋅233⋅413⋅26713 |
sage:E.j_invariant().factor()
gp:E.j
magma:jInvariant(E);
oscar:j_invariant(E)
|
| Endomorphism ring: |
End(E) | = | Z |
| Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm()
magma:HasComplexMultiplication(E);
|
| Sato-Tate group: |
ST(E) | = | SU(2) |
| Faltings height: |
hFaltings | ≈ | 1.4949859856174978390083699667 |
gp:ellheight(E)
magma:FaltingsHeight(E);
oscar:faltings_height(E)
|
| Stable Faltings height: |
hstable | ≈ | 1.0372308653391188009270177846 |
magma:StableFaltingsHeight(E);
oscar:stable_faltings_height(E)
|
| abc quality: |
Q | ≈ | 1.0731206429807103 |
|
| Szpiro ratio: |
σm | ≈ | 7.752519607237508 |
|
| Analytic rank: |
ran | = | 0
|
sage:E.analytic_rank()
gp:ellanalyticrank(E)
magma:AnalyticRank(E);
|
| Mordell-Weil rank: |
r | = | 0
|
sage:E.rank()
gp:[lower,upper] = ellrank(E)
magma:Rank(E);
|
| Regulator: |
Reg(E/Q) | = | 1 |
sage:E.regulator()
gp:G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma:Regulator(E);
|
| Real period: |
Ω | ≈ | 1.1045333202937014186495670087 |
sage:E.period_lattice().omega()
gp:if(E.disc>0,2,1)*E.omega[1]
magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
| Tamagawa product: |
∏pcp | = | 6
= 1⋅3⋅2
|
sage:E.tamagawa_numbers()
gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma:TamagawaNumbers(E);
oscar:tamagawa_numbers(E)
|
| Torsion order: |
#E(Q)tor | = | 3 |
sage:E.torsion_order()
gp:elltors(E)[1]
magma:Order(TorsionSubgroup(E));
oscar:prod(torsion_structure(E)[1])
|
| Special value: |
L(E,1) | ≈ | 0.73635554686246761243304467248 |
sage:r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp:[r,L1r] = ellanalyticrank(E); L1r/r!
magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
| Analytic order of Ш: |
Шan |
= |
1
(exact)
|
sage:E.sha().an_numerical()
magma:MordellWeilShaInformation(E);
|
0.736355547≈L(E,1)=#E(Q)tor2#Ш(E/Q)⋅ΩE⋅Reg(E/Q)⋅∏pcp≈321⋅1.104533⋅1.000000⋅6≈0.736355547
sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, -1, 0, -472266, 125037036]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, -1, 0, -472266, 125037036]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
702.2.a.a
q−q2+q4−3q5−q7−q8+3q10−3q11+q13+q14+q16+6q17+2q19+O(q20)
sage:E.q_eigenform(20)
gp:\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma:ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable.
There
are 3 primes p
of bad reduction:
sage:E.local_data()
gp:ellglobalred(E)[5]
magma:[LocalInformation(E,p) : p in BadPrimes(E)];
oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ-adic Galois representation has maximal image
for all primes ℓ except those listed in the table below.
sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage:gens = [[470, 243, 657, 370], [1, 18, 0, 1], [13, 18, 270, 313], [10, 9, 81, 73], [1, 0, 18, 1], [919, 18, 918, 19], [703, 18, 0, 1], [10, 9, 459, 928], [1, 18, 10, 181]]
GL(2,Integers(936)).subgroup(gens)
magma:Gens := [[470, 243, 657, 370], [1, 18, 0, 1], [13, 18, 270, 313], [10, 9, 81, 73], [1, 0, 18, 1], [919, 18, 918, 19], [703, 18, 0, 1], [10, 9, 459, 928], [1, 18, 10, 181]];
sub<GL(2,Integers(936))|Gens>;
The image H:=ρE(Gal(Q/Q)) of the adelic Galois representation has
level 936=23⋅32⋅13, index 144, genus 3, and generators
(470657243370),(10181),(1327018313),(1081973),(11801),(9199181819),(7030181),(104599928),(11018181).
The torsion field K:=Q(E[936]) is a degree-1086898176 Galois extension of Q with Gal(K/Q) isomorphic to the projection of H to GL2(Z/936Z).
The table below list all primes ℓ for which the Serre invariants associated to the mod-ℓ Galois representation are exceptional.
gp:ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d for d=
3 and 9.
Its isogeny class 702e
consists of 3 curves linked by isogenies of
degrees dividing 9.
This elliptic curve is its own minimal quadratic twist.
The number fields K of degree less than 24 such that
E(K)tors is strictly larger than E(Q)tors
≅Z/3Z
are as follows:
We only show fields where the torsion growth is primitive.
For fields not in the database, click on the degree shown to reveal the defining polynomial.
All Iwasawa λ and μ-invariants for primes p≥5 of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
p-adic regulators
All p-adic regulators are identically 1 since the rank is 0.