Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-5300x+143632\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-5300xz^2+143632z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-6868827x+6721901046\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(64, 228)$ | $0.41591515619002312642162626569$ | $\infty$ |
$(4, 348)$ | $0.62449850985611226199839616300$ | $\infty$ |
$(191/4, -191/8)$ | $0$ | $2$ |
Integral points
\( \left(-76, 368\right) \), \( \left(-76, -292\right) \), \( \left(-66, 488\right) \), \( \left(-66, -422\right) \), \( \left(-38, 558\right) \), \( \left(-38, -520\right) \), \( \left(4, 348\right) \), \( \left(4, -352\right) \), \( \left(12, 280\right) \), \( \left(12, -292\right) \), \( \left(32, 68\right) \), \( \left(32, -100\right) \), \( \left(34, 38\right) \), \( \left(34, -72\right) \), \( \left(48, -4\right) \), \( \left(48, -44\right) \), \( \left(54, 98\right) \), \( \left(54, -152\right) \), \( \left(64, 228\right) \), \( \left(64, -292\right) \), \( \left(144, 1468\right) \), \( \left(144, -1612\right) \), \( \left(194, 2438\right) \), \( \left(194, -2632\right) \), \( \left(204, 2648\right) \), \( \left(204, -2852\right) \), \( \left(298, 4856\right) \), \( \left(298, -5154\right) \), \( \left(1364, 49628\right) \), \( \left(1364, -50992\right) \), \( \left(4764, 326408\right) \), \( \left(4764, -331172\right) \), \( \left(6304, 497348\right) \), \( \left(6304, -503652\right) \), \( \left(278914, 147161528\right) \), \( \left(278914, -147440442\right) \)
Invariants
Conductor: | $N$ | = | \( 70070 \) | = | $2 \cdot 5 \cdot 7^{2} \cdot 11 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $561120560000$ | = | $2^{7} \cdot 5^{4} \cdot 7^{3} \cdot 11^{2} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{48002330445607}{1635920000} \) | = | $2^{-7} \cdot 5^{-4} \cdot 11^{-2} \cdot 13^{-2} \cdot 36343^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0264687550390530648405229095$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.53999121777522473856418472364$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8859269615714529$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.3467029108672$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.22793253800131023252996464929$ |
|
Real period: | $\Omega$ | ≈ | $0.91567751328157590150321751491$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 224 $ = $ 7\cdot2^{2}\cdot2\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $11.687911177207891042711002312 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 11.687911177 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.915678 \cdot 0.227933 \cdot 224}{2^2} \\ & \approx 11.687911177\end{aligned}$$
Modular invariants
Modular form 70070.2.a.bi
For more coefficients, see the Downloads section to the right.
Modular degree: | 172032 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
$5$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$7$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
$11$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$13$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 8008 = 2^{3} \cdot 7 \cdot 11 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 4003 & 0 \end{array}\right),\left(\begin{array}{rr} 3004 & 5009 \\ 1001 & 7008 \end{array}\right),\left(\begin{array}{rr} 4369 & 4 \\ 730 & 9 \end{array}\right),\left(\begin{array}{rr} 5724 & 1 \\ 4575 & 0 \end{array}\right),\left(\begin{array}{rr} 8005 & 4 \\ 8004 & 5 \end{array}\right),\left(\begin{array}{rr} 4929 & 4 \\ 1850 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[8008])$ is a degree-$89270570188800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8008\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 7 \) |
$5$ | split multiplicative | $6$ | \( 14014 = 2 \cdot 7^{2} \cdot 11 \cdot 13 \) |
$7$ | additive | $20$ | \( 715 = 5 \cdot 11 \cdot 13 \) |
$11$ | nonsplit multiplicative | $12$ | \( 6370 = 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 5390 = 2 \cdot 5 \cdot 7^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 70070.bi
consists of 2 curves linked by isogenies of
degree 2.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.4.224448224.2 | \(\Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | ord | split | add | nonsplit | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 5 | 2 | 3 | - | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
$\mu$-invariant(s) | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.