Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-105635x-8225587\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-105635xz^2-8225587z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-136903635x-381719435922\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(358, -179)$ | $0$ | $2$ |
Integral points
\( \left(358, -179\right) \)
Invariants
Conductor: | $N$ | = | \( 69938 \) | = | $2 \cdot 11^{2} \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $46524159352227392$ | = | $2^{6} \cdot 11^{6} \cdot 17^{7} $ |
|
j-invariant: | $j$ | = | \( \frac{3048625}{1088} \) | = | $2^{-6} \cdot 5^{3} \cdot 17^{-1} \cdot 29^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8991619718788313255037509200$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.71639233654846198665198817792$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9000957170016773$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.151980267820219$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.27264396265504028536428644100$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.0905758506201611414571457640 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.090575851 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.272644 \cdot 1.000000 \cdot 16}{2^2} \\ & \approx 1.090575851\end{aligned}$$
Modular invariants
Modular form 69938.2.a.f
For more coefficients, see the Downloads section to the right.
Modular degree: | 622080 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$11$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$17$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4488 = 2^{3} \cdot 3 \cdot 11 \cdot 17 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 11 & 2 \\ 4438 & 4479 \end{array}\right),\left(\begin{array}{rr} 2883 & 88 \\ 4070 & 485 \end{array}\right),\left(\begin{array}{rr} 2729 & 3674 \\ 2574 & 4093 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 4079 & 0 \\ 0 & 4487 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 2078 & 1221 \\ 4059 & 824 \end{array}\right),\left(\begin{array}{rr} 4477 & 12 \\ 4476 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2245 & 4092 \\ 2046 & 2113 \end{array}\right)$.
The torsion field $K:=\Q(E[4488])$ is a degree-$794139033600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4488\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 34969 = 11^{2} \cdot 17^{2} \) |
$3$ | good | $2$ | \( 34969 = 11^{2} \cdot 17^{2} \) |
$11$ | additive | $62$ | \( 578 = 2 \cdot 17^{2} \) |
$17$ | additive | $162$ | \( 242 = 2 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 69938.f
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 34.a4, its twist by $-187$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{17}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-187}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.4.131648.2 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-11}, \sqrt{17})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.51025401009.3 | \(\Z/6\Z\) | not in database |
$8$ | 8.0.361879703274496.10 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.8.5008715616256.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.5008715616256.18 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.0.37060619723190951945198460735968718848.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 11 | 17 |
---|---|---|---|---|
Reduction type | nonsplit | ord | add | add |
$\lambda$-invariant(s) | 6 | 0 | - | - |
$\mu$-invariant(s) | 0 | 0 | - | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.