Properties

Label 69360j
Number of curves $4$
Conductor $69360$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 69360j have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 69360j do not have complex multiplication.

Modular form 69360.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 4 q^{7} + q^{9} + 4 q^{11} + 2 q^{13} + q^{15} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 69360j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
69360.b4 69360j1 \([0, -1, 0, -98356, -17352320]\) \(-17029316176/11275335\) \(-69672749199517440\) \([2]\) \(663552\) \(1.9327\) \(\Gamma_0(N)\)-optimal
69360.b3 69360j2 \([0, -1, 0, -1768776, -904679424]\) \(24759905519524/5267025\) \(130184375666918400\) \([2, 2]\) \(1327104\) \(2.2793\)  
69360.b2 69360j3 \([0, -1, 0, -1965296, -691022880]\) \(16981825082402/5646560625\) \(279130617238775040000\) \([2]\) \(2654208\) \(2.6259\)  
69360.b1 69360j4 \([0, -1, 0, -28298976, -57933997344]\) \(50700519510140162/2295\) \(113450436311040\) \([2]\) \(2654208\) \(2.6259\)