Properties

Label 69360dn
Number of curves $2$
Conductor $69360$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 69360dn have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 69360dn do not have complex multiplication.

Modular form 69360.2.a.dn

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{9} - 2 q^{11} + 2 q^{13} + q^{15} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 69360dn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
69360.dl1 69360dn1 \([0, 1, 0, -127310665, -552894566350]\) \(590887175978458660864/57171426328125\) \(22079667965176541250000\) \([2]\) \(7741440\) \(3.3234\) \(\Gamma_0(N)\)-optimal
69360.dl2 69360dn2 \([0, 1, 0, -117830020, -638709572632]\) \(-29279123829148431184/11573052978515625\) \(-71512413391251562500000000\) \([2]\) \(15482880\) \(3.6700\)