Show commands: SageMath
Rank
The elliptic curves in class 69360dn have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 69360dn do not have complex multiplication.Modular form 69360.2.a.dn
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 69360dn
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 69360.dl1 | 69360dn1 | \([0, 1, 0, -127310665, -552894566350]\) | \(590887175978458660864/57171426328125\) | \(22079667965176541250000\) | \([2]\) | \(7741440\) | \(3.3234\) | \(\Gamma_0(N)\)-optimal |
| 69360.dl2 | 69360dn2 | \([0, 1, 0, -117830020, -638709572632]\) | \(-29279123829148431184/11573052978515625\) | \(-71512413391251562500000000\) | \([2]\) | \(15482880\) | \(3.6700\) |