Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-4720x+50468\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-4720xz^2+50468z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-382347x+37938186\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-38, 420)$ | $3.4713817450501214279302335638$ | $\infty$ |
| $(11, 0)$ | $0$ | $2$ |
| $(62, 0)$ | $0$ | $2$ |
Integral points
\( \left(-74, 0\right) \), \((-38,\pm 420)\), \( \left(11, 0\right) \), \( \left(62, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 69360 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $5561295897600$ | = | $2^{10} \cdot 3^{2} \cdot 5^{2} \cdot 17^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{470596}{225} \) | = | $2^{2} \cdot 3^{-2} \cdot 5^{-2} \cdot 7^{6}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.1394361665581134851502767903$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.85479315593661564615551728652$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1324456905360707$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.3185870088874347$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.4713817450501214279302335638$ |
|
| Real period: | $\Omega$ | ≈ | $0.67828899496968905188336973050$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot2\cdot2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $9.4184001400246888640461255107 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 9.418400140 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.678289 \cdot 3.471382 \cdot 64}{4^2} \\ & \approx 9.418400140\end{aligned}$$
Modular invariants
Modular form 69360.2.a.dx
For more coefficients, see the Downloads section to the right.
| Modular degree: | 163840 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{2}^{*}$ | additive | 1 | 4 | 10 | 0 |
| $3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $17$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 817 & 1802 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1361 & 1564 \\ 442 & 1089 \end{array}\right),\left(\begin{array}{rr} 1529 & 476 \\ 1258 & 951 \end{array}\right),\left(\begin{array}{rr} 2037 & 4 \\ 2036 & 5 \end{array}\right),\left(\begin{array}{rr} 783 & 1802 \\ 238 & 239 \end{array}\right),\left(\begin{array}{rr} 1799 & 0 \\ 0 & 2039 \end{array}\right)$.
The torsion field $K:=\Q(E[2040])$ is a degree-$57755566080$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2040\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 289 = 17^{2} \) |
| $3$ | split multiplicative | $4$ | \( 23120 = 2^{4} \cdot 5 \cdot 17^{2} \) |
| $5$ | split multiplicative | $6$ | \( 13872 = 2^{4} \cdot 3 \cdot 17^{2} \) |
| $17$ | additive | $146$ | \( 240 = 2^{4} \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 69360bt
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 120b2, its twist by $-68$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $4$ | \(\Q(\sqrt{6}, \sqrt{34})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{10}, \sqrt{-34})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-15}, \sqrt{-51})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | 16.0.76785869193364478361600000000.4 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | split | ord | ss | ord | add | ord | ord | ord | ss | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 2 | 2 | 1 | 1,1 | 1 | - | 1 | 1 | 1 | 3,1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0,0 | 0 | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.