Properties

Label 69360.ds
Number of curves $2$
Conductor $69360$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ds1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 69360.ds have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 69360.ds do not have complex multiplication.

Modular form 69360.2.a.ds

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + 2 q^{7} + q^{9} - 3 q^{11} - 4 q^{13} + q^{15} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 69360.ds

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
69360.ds1 69360ds2 \([0, 1, 0, -1102922645, 14097790913475]\) \(17968412610002944/158203125\) \(1306364047490952000000000\) \([]\) \(25380864\) \(3.7940\)  
69360.ds2 69360ds1 \([0, 1, 0, -20490485, -2186889117]\) \(115220905984/66430125\) \(548547488997640708608000\) \([]\) \(8460288\) \(3.2447\) \(\Gamma_0(N)\)-optimal