Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-96x-58560\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-96xz^2-58560z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-7803x-42713622\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(74, 578)$ | $1.0843095035142378362493626393$ | $\infty$ |
| $(4474/9, 298826/27)$ | $4.9272951927408820373255986675$ | $\infty$ |
| $(40, 0)$ | $0$ | $2$ |
Integral points
\( \left(40, 0\right) \), \((49,\pm 228)\), \((74,\pm 578)\), \((176,\pm 2312)\), \((1064,\pm 34688)\)
Invariants
| Conductor: | $N$ | = | \( 69360 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-1483012239360$ | = | $-1 \cdot 2^{12} \cdot 3 \cdot 5 \cdot 17^{6} $ |
|
| j-invariant: | $j$ | = | \( -\frac{1}{15} \) | = | $-1 \cdot 3^{-1} \cdot 5^{-1}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0143290999452642526811708118$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.0954247526427890968608286186$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1980768440515948$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.1828874250607644$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.3015380425609294227256150325$ |
|
| Real period: | $\Omega$ | ≈ | $0.38714560505411717238514855374$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot1\cdot1\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $8.2098686128186840755164073140 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.209868613 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.387146 \cdot 5.301538 \cdot 16}{2^2} \\ & \approx 8.209868613\end{aligned}$$
Modular invariants
Modular form 69360.2.a.n
For more coefficients, see the Downloads section to the right.
| Modular degree: | 81920 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{4}^{*}$ | additive | -1 | 4 | 12 | 0 |
| $3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $17$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 32.48.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 8160 = 2^{5} \cdot 3 \cdot 5 \cdot 17 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 28 \\ 68 & 381 \end{array}\right),\left(\begin{array}{rr} 1174 & 5763 \\ 7565 & 6988 \end{array}\right),\left(\begin{array}{rr} 23 & 18 \\ 5598 & 6155 \end{array}\right),\left(\begin{array}{rr} 6903 & 3842 \\ 2074 & 6223 \end{array}\right),\left(\begin{array}{rr} 8129 & 32 \\ 8128 & 33 \end{array}\right),\left(\begin{array}{rr} 5152 & 6749 \\ 1547 & 7362 \end{array}\right),\left(\begin{array}{rr} 3839 & 0 \\ 0 & 8159 \end{array}\right),\left(\begin{array}{rr} 8159 & 3808 \\ 6630 & 7649 \end{array}\right)$.
The torsion field $K:=\Q(E[8160])$ is a degree-$924089057280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8160\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 4335 = 3 \cdot 5 \cdot 17^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 23120 = 2^{4} \cdot 5 \cdot 17^{2} \) |
| $5$ | nonsplit multiplicative | $6$ | \( 13872 = 2^{4} \cdot 3 \cdot 17^{2} \) |
| $17$ | additive | $146$ | \( 240 = 2^{4} \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4, 8 and 16.
Its isogeny class 69360.n
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 15.a7, its twist by $-68$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-15}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{255}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-17}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-15}, \sqrt{-17})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{-17})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{5}, \sqrt{-17})\) | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.15221702250000.5 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.243547236000000.8 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.1082432160000.9 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.334084000000.3 | \(\Z/16\Z\) | not in database |
| $8$ | 8.0.27060804000000.43 | \(\Z/16\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | 16.0.732287113126416000000000000.10 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/32\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | nonsplit | nonsplit | ss | ord | ord | add | ord | ss | ord | ss | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 2 | 2 | 2,2 | 2 | 2 | - | 2 | 2,2 | 2 | 2,2 | 2 | 2 | 2 | 2 |
| $\mu$-invariant(s) | - | 0 | 0 | 0,0 | 0 | 0 | - | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.