Show commands: SageMath
Rank
The elliptic curves in class 6930q have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 6930q do not have complex multiplication.Modular form 6930.2.a.q
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 6930q
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 6930.p3 | 6930q1 | \([1, -1, 0, -2889, 46413]\) | \(3658671062929/880165440\) | \(641640605760\) | \([2]\) | \(13824\) | \(0.97671\) | \(\Gamma_0(N)\)-optimal |
| 6930.p4 | 6930q2 | \([1, -1, 0, 6831, 285525]\) | \(48351870250991/76871856600\) | \(-56039583461400\) | \([2]\) | \(27648\) | \(1.3233\) | |
| 6930.p1 | 6930q3 | \([1, -1, 0, -218349, 39325905]\) | \(1579250141304807889/41926500\) | \(30564418500\) | \([6]\) | \(41472\) | \(1.5260\) | |
| 6930.p2 | 6930q4 | \([1, -1, 0, -218079, 39427803]\) | \(-1573398910560073969/8138108343750\) | \(-5932680982593750\) | \([6]\) | \(82944\) | \(1.8726\) |