Properties

Label 6930q
Number of curves $4$
Conductor $6930$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6930q have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6930q do not have complex multiplication.

Modular form 6930.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} + q^{7} - q^{8} - q^{10} + q^{11} - 4 q^{13} - q^{14} + q^{16} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 6930q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6930.p3 6930q1 \([1, -1, 0, -2889, 46413]\) \(3658671062929/880165440\) \(641640605760\) \([2]\) \(13824\) \(0.97671\) \(\Gamma_0(N)\)-optimal
6930.p4 6930q2 \([1, -1, 0, 6831, 285525]\) \(48351870250991/76871856600\) \(-56039583461400\) \([2]\) \(27648\) \(1.3233\)  
6930.p1 6930q3 \([1, -1, 0, -218349, 39325905]\) \(1579250141304807889/41926500\) \(30564418500\) \([6]\) \(41472\) \(1.5260\)  
6930.p2 6930q4 \([1, -1, 0, -218079, 39427803]\) \(-1573398910560073969/8138108343750\) \(-5932680982593750\) \([6]\) \(82944\) \(1.8726\)