Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-141773x-20499919\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-141773xz^2-20499919z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-2268363x-1314263162\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(21423/4, 3105983/8)$ | $6.0664810532950834019284334074$ | $\infty$ |
| $(-213, 106)$ | $0$ | $2$ |
| $(435, -218)$ | $0$ | $2$ |
Integral points
\( \left(-213, 106\right) \), \( \left(435, -218\right) \)
Invariants
| Conductor: | $N$ | = | \( 6930 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $196932105562500$ | = | $2^{2} \cdot 3^{12} \cdot 5^{6} \cdot 7^{2} \cdot 11^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{432288716775559561}{270140062500} \) | = | $2^{-2} \cdot 3^{-6} \cdot 5^{-6} \cdot 7^{-2} \cdot 11^{-2} \cdot 31^{3} \cdot 24391^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6847073080125435512561268807$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1354011636784887055585042622$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9765179895036278$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.337132306845628$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.0664810532950834019284334074$ |
|
| Real period: | $\Omega$ | ≈ | $0.24604678900059392795248537073$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2^{2}\cdot2\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $5.9705527347847847728098491671 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.970552735 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.246047 \cdot 6.066481 \cdot 64}{4^2} \\ & \approx 5.970552735\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 36864 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $3$ | $4$ | $I_{6}^{*}$ | additive | -1 | 2 | 12 | 6 |
| $5$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $11$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 8.12.0.1 |
| $3$ | 3B.1.2 | 3.8.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9240 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 9 & 4 \\ 9224 & 9233 \end{array}\right),\left(\begin{array}{rr} 4621 & 12 \\ 6 & 73 \end{array}\right),\left(\begin{array}{rr} 6937 & 12 \\ 4554 & 9127 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 9229 & 12 \\ 9228 & 13 \end{array}\right),\left(\begin{array}{rr} 8407 & 6 \\ 3354 & 9235 \end{array}\right),\left(\begin{array}{rr} 3697 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6159 & 9236 \\ 1538 & 9231 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5281 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[9240])$ is a degree-$2452488192000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 9 = 3^{2} \) |
| $3$ | additive | $2$ | \( 154 = 2 \cdot 7 \cdot 11 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \) |
| $7$ | split multiplicative | $8$ | \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
| $11$ | split multiplicative | $12$ | \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 6930ba
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 2310l2, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-3}) \) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $3$ | 3.1.71148.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-2}, \sqrt{33})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{2}, \sqrt{105})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-33}, \sqrt{-105})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $6$ | 6.0.15186113712.1 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.0.4857532416.2 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.0.455583411360000.12 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.0.497871360000.14 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $18$ | 18.0.429345805562767030483555524510187500000000.1 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | add | nonsplit | split | split | ord | ord | ord | ss | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | 2 | - | 5 | 2 | 2 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | 1 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.