Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2+2226x-157132\) | (homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z+2226xz^2-157132z^3\) | (dehomogenize, simplify) |
\(y^2=x^3+35613x-10020834\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Torsion generators
\( \left(\frac{163}{4}, -\frac{163}{8}\right) \)
Integral points
None
Invariants
Conductor: | \( 6930 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-11296609077600 $ | = | $-1 \cdot 2^{5} \cdot 3^{9} \cdot 5^{2} \cdot 7^{2} \cdot 11^{4} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( \frac{61958108493}{573927200} \) | = | $2^{-5} \cdot 3^{3} \cdot 5^{-2} \cdot 7^{-2} \cdot 11^{-4} \cdot 1319^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $1.1858530782996183154300548040\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $0.36189386179853604688362087631\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $1.073259200681864\dots$ | |||
Szpiro ratio: | $4.234211094438517\dots$ |
BSD invariants
Analytic rank: | $0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.35475807321375425581732088102\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 16 $ = $ 1\cdot2\cdot2\cdot2\cdot2 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $2$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L(E,1) $ ≈ $ 1.4190322928550170232692835241 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 1.419032293 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.354758 \cdot 1.000000 \cdot 16}{2^2} \approx 1.419032293$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 15360 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
$3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
$5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$11$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 837 & 4 \\ 836 & 5 \end{array}\right),\left(\begin{array}{rr} 284 & 1 \\ 559 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 737 & 106 \\ 104 & 735 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 337 & 4 \\ 674 & 9 \end{array}\right),\left(\begin{array}{rr} 241 & 4 \\ 482 & 9 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 419 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$5945425920$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 3 \) |
$3$ | additive | $2$ | \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \) |
$5$ | split multiplicative | $6$ | \( 693 = 3^{2} \cdot 7 \cdot 11 \) |
$7$ | nonsplit multiplicative | $8$ | \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
$11$ | nonsplit multiplicative | $12$ | \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 6930.i
consists of 2 curves linked by isogenies of
degree 2.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-6}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.1058400.3 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.3745618329600.39 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.71693475840000.4 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.768797006670000.4 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 |
---|---|---|---|---|---|
Reduction type | nonsplit | add | split | nonsplit | nonsplit |
$\lambda$-invariant(s) | 2 | - | 1 | 0 | 0 |
$\mu$-invariant(s) | 1 | - | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.