Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-2307848x-1265537149\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-2307848xz^2-1265537149z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-36925563x-81031303082\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{6}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-1029, 4861)$ | $4.0443207021967222679522889382$ | $\infty$ |
| $(-777, 8011)$ | $0$ | $6$ |
Integral points
\( \left(-1029, 4861\right) \), \( \left(-1029, -3833\right) \), \( \left(-777, 8011\right) \), \( \left(-777, -7235\right) \), \( \left(2611, 101181\right) \), \( \left(2611, -103793\right) \), \( \left(4063, 235491\right) \), \( \left(4063, -239555\right) \)
Invariants
| Conductor: | $N$ | = | \( 6930 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $94170552037674706440$ | = | $2^{3} \cdot 3^{7} \cdot 5 \cdot 7^{3} \cdot 11^{12} $ |
|
| j-invariant: | $j$ | = | \( \frac{1864737106103260904761}{129177711985836360} \) | = | $2^{-3} \cdot 3^{-1} \cdot 5^{-1} \cdot 7^{-3} \cdot 11^{-12} \cdot 59^{3} \cdot 229^{3} \cdot 911^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5805870426265710516623655599$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.0312808982925162059647429414$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0099317486363533$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.283525479900269$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.0443207021967222679522889382$ |
|
| Real period: | $\Omega$ | ≈ | $0.12302339450029696397624268537$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 432 $ = $ 3\cdot2^{2}\cdot1\cdot3\cdot( 2^{2} \cdot 3 ) $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $6$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $5.9705527347847847728098491671 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.970552735 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.123023 \cdot 4.044321 \cdot 432}{6^2} \\ & \approx 5.970552735\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 221184 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $3$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $11$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.7 |
| $3$ | 3B.1.1 | 3.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9240 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right),\left(\begin{array}{rr} 2311 & 24 \\ 2322 & 289 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 1926 & 409 \\ 4235 & 2696 \end{array}\right),\left(\begin{array}{rr} 9217 & 24 \\ 9216 & 25 \end{array}\right),\left(\begin{array}{rr} 3712 & 21 \\ 8955 & 8866 \end{array}\right),\left(\begin{array}{rr} 6144 & 7681 \\ 5575 & 1134 \end{array}\right),\left(\begin{array}{rr} 2521 & 24 \\ 2532 & 289 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 7934 & 11 \end{array}\right),\left(\begin{array}{rr} 1336 & 21 \\ 1035 & 8866 \end{array}\right)$.
The torsion field $K:=\Q(E[9240])$ is a degree-$2452488192000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 315 = 3^{2} \cdot 5 \cdot 7 \) |
| $3$ | additive | $8$ | \( 5 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \) |
| $7$ | split multiplicative | $8$ | \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
| $11$ | split multiplicative | $12$ | \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 6930.z
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 2310.l1, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{6}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{210}) \) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-2}) \) | \(\Z/12\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-105}) \) | \(\Z/12\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-2}, \sqrt{-105})\) | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $6$ | 6.0.110716875.2 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | deg 8 | \(\Z/24\Z\) | not in database |
| $8$ | deg 8 | \(\Z/24\Z\) | not in database |
| $9$ | 9.3.119625333944628508920000.1 | \(\Z/18\Z\) | not in database |
| $12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
| $18$ | 18.6.96503181583865889275684712882967495533039452160000000000000.1 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
| $18$ | 18.0.30010707586819324167365508379542855753714892800000000.1 | \(\Z/36\Z\) | not in database |
| $18$ | 18.0.188482776530988064991571704849545889712967680000000000000.1 | \(\Z/36\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | add | nonsplit | split | split | ord | ord | ord | ss | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | 2 | - | 5 | 2 | 2 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | 2 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.