Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-24x+64\)
|
(homogenize, simplify) |
\(y^2z=x^3-24xz^2+64z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-24x+64\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(0, 8)$ | $0.75336365109742533394032205720$ | $\infty$ |
Integral points
\((0,\pm 8)\)
Invariants
Conductor: | $N$ | = | \( 6912 \) | = | $2^{8} \cdot 3^{3}$ |
|
Discriminant: | $\Delta$ | = | $-884736$ | = | $-1 \cdot 2^{15} \cdot 3^{3} $ |
|
j-invariant: | $j$ | = | \( -1728 \) | = | $-1 \cdot 2^{6} \cdot 3^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.15612221779614248007554046133$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.2972092656631015396958919224$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.4704079121812943$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.75336365109742533394032205720$ |
|
Real period: | $\Omega$ | ≈ | $2.6016348714182921706095140557$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.9199542911081305679476247114 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.919954291 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 2.601635 \cdot 0.753364 \cdot 2}{1^2} \\ & \approx 3.919954291\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1152 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III^{*}$ | additive | 1 | 8 | 15 | 0 |
$3$ | $1$ | $II$ | additive | 1 | 3 | 3 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3Ns | 3.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 24.24.1.ck.1, level \( 24 = 2^{3} \cdot 3 \), index $24$, genus $1$, and generators
$\left(\begin{array}{rr} 19 & 6 \\ 18 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 4 & 15 \\ 9 & 14 \end{array}\right),\left(\begin{array}{rr} 2 & 3 \\ 3 & 5 \end{array}\right),\left(\begin{array}{rr} 21 & 2 \\ 4 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6 & 5 \\ 19 & 6 \end{array}\right)$.
The torsion field $K:=\Q(E[24])$ is a degree-$3072$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/24\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 27 = 3^{3} \) |
$3$ | additive | $2$ | \( 256 = 2^{8} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 6912.h consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 6912.a1, its twist by $24$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.216.1 | \(\Z/2\Z\) | not in database |
$4$ | 4.0.6144.1 | \(\Z/3\Z\) | not in database |
$4$ | 4.2.18432.2 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.1119744.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.0.339738624.10 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | 12.2.1972098761547055104.20 | \(\Z/4\Z\) | not in database |
$12$ | 12.0.54780521154084864.39 | \(\Z/6\Z\) | not in database |
$12$ | 12.2.164341563462254592.57 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.