Properties

Label 68770.a
Number of curves $4$
Conductor $68770$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 68770.a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1 + T\)
\(13\)\(1 - T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 68770.a do not have complex multiplication.

Modular form 68770.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 2 q^{3} + q^{4} - q^{5} + 2 q^{6} + 4 q^{7} - q^{8} + q^{9} + q^{10} + 6 q^{11} - 2 q^{12} + q^{13} - 4 q^{14} + 2 q^{15} + q^{16} + 6 q^{17} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 68770.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
68770.a1 68770d3 \([1, 0, 1, -109779, 13428782]\) \(988345570681/44994560\) \(6660809689763840\) \([2]\) \(855360\) \(1.7982\)  
68770.a2 68770d1 \([1, 0, 1, -17204, -864798]\) \(3803721481/26000\) \(3848933114000\) \([2]\) \(285120\) \(1.2489\) \(\Gamma_0(N)\)-optimal
68770.a3 68770d2 \([1, 0, 1, -6624, -1914334]\) \(-217081801/10562500\) \(-1563629077562500\) \([2]\) \(570240\) \(1.5955\)  
68770.a4 68770d4 \([1, 0, 1, 59501, 51144366]\) \(157376536199/7722894400\) \(-1143265538157121600\) \([2]\) \(1710720\) \(2.1448\)