Properties

Label 6864.o
Number of curves $2$
Conductor $6864$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6864.o have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6864.o do not have complex multiplication.

Modular form 6864.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{5} + q^{7} + q^{9} - q^{11} + q^{13} - 3 q^{15} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 6864.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6864.o1 6864o1 \([0, -1, 0, -1663784, -825471888]\) \(-124352595912593543977/103332962304\) \(-423251813597184\) \([]\) \(74880\) \(2.1099\) \(\Gamma_0(N)\)-optimal
6864.o2 6864o2 \([0, -1, 0, -1291544, -1204934928]\) \(-58169016237585194137/119573538788081664\) \(-489773214875982495744\) \([]\) \(224640\) \(2.6592\)