Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3-x^2-43143x+3354411\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3-x^2z-43143xz^2+3354411z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-55913760x+155832447888\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 68413 \) | = | $37 \cdot 43^{2}$ |
|
Discriminant: | $\Delta$ | = | $320196002520997$ | = | $37^{3} \cdot 43^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{1404928000}{50653} \) | = | $2^{15} \cdot 5^{3} \cdot 7^{3} \cdot 37^{-3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5533754730364297210455836437$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.32722458481035149069083761297$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9727427413985318$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.9189082735787433$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.53911620023062003586748703058$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.0782324004612400717349740612 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.078232400 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.539116 \cdot 1.000000 \cdot 2}{1^2} \\ & \approx 1.078232400\end{aligned}$$
Modular invariants
Modular form 68413.2.a.a
For more coefficients, see the Downloads section to the right.
Modular degree: | 157248 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$37$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$43$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3Cs | 9.36.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 85914 = 2 \cdot 3^{3} \cdot 37 \cdot 43 \), index $1296$, genus $43$, and generators
$\left(\begin{array}{rr} 19 & 54 \\ 78498 & 64837 \end{array}\right),\left(\begin{array}{rr} 1 & 27 \\ 27 & 730 \end{array}\right),\left(\begin{array}{rr} 43 & 30 \\ 81624 & 82921 \end{array}\right),\left(\begin{array}{rr} 59939 & 0 \\ 0 & 85913 \end{array}\right),\left(\begin{array}{rr} 9289 & 71982 \\ 73401 & 48763 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 19781 & 36808 \\ 22962 & 9031 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right),\left(\begin{array}{rr} 85861 & 54 \\ 85860 & 55 \end{array}\right)$.
The torsion field $K:=\Q(E[85914])$ is a degree-$8866813198408704$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/85914\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$3$ | good | $2$ | \( 1849 = 43^{2} \) |
$37$ | nonsplit multiplicative | $38$ | \( 1849 = 43^{2} \) |
$43$ | additive | $926$ | \( 37 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 68413.a
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 37.b2, its twist by $-43$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{129}) \) | \(\Z/3\Z\) | not in database |
$2$ | \(\Q(\sqrt{-43}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.3.148.1 | \(\Z/2\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{-43})\) | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$6$ | 6.6.810448.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.6.47021075856.1 | \(\Z/6\Z\) | not in database |
$6$ | 6.0.1741521328.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.6.25229617506680884168591782712932557890495402521.1 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.2411927878252246829852269445679496707.1 | \(\Z/9\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ss | ord | ss | ord | ord | ord | ord | ord | ord | ord | ord | nonsplit | ord | add | ord |
$\lambda$-invariant(s) | 4,3 | 0 | 0,0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 |
$\mu$-invariant(s) | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.