Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2=x^3+45x+4050\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z=x^3+45xz^2+4050z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3+45x+4050\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(9, 72)$ | $0.82068326672074983340824121730$ | $\infty$ | 
| $(-9, 54)$ | $1.4603241676982419579766384464$ | $\infty$ | 
| $(-15, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-15, 0\right) \), \((-14,\pm 26)\), \((-9,\pm 54)\), \((1,\pm 64)\), \((9,\pm 72)\), \((15,\pm 90)\), \((30,\pm 180)\), \((49,\pm 352)\), \((105,\pm 1080)\), \((279,\pm 4662)\), \((705,\pm 18720)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 68400 \) | = | $2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $-7091712000$ | = | $-1 \cdot 2^{12} \cdot 3^{6} \cdot 5^{3} \cdot 19 $ | 
     | 
        
| j-invariant: | $j$ | = | \( \frac{27}{19} \) | = | $3^{3} \cdot 19^{-1}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.56922147994683403728742362972$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.0755913230556912114776209435$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $1.119402634915339$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.7068843165503225$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 2$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.1514020228263109903293586564$ | 
     | 
| Real period: | $\Omega$ | ≈ | $1.0344315419589943358900112668$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2^{2}\cdot2\cdot1 $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | 
     | 
        
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $9.5283725590954085703549461928 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | 
     | 
        
BSD formula
$$\begin{aligned} 9.528372559 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.034432 \cdot 1.151402 \cdot 32}{2^2} \\ & \approx 9.528372559\end{aligned}$$
Modular invariants
Modular form 68400.2.a.bc
For more coefficients, see the Downloads section to the right.
| Modular degree: | 32768 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{4}^{*}$ | additive | -1 | 4 | 12 | 0 | 
| $3$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 | 
| $5$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 | 
| $19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 2.3.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 380 = 2^{2} \cdot 5 \cdot 19 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 377 & 4 \\ 376 & 5 \end{array}\right),\left(\begin{array}{rr} 42 & 1 \\ 359 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 97 & 286 \\ 284 & 95 \end{array}\right),\left(\begin{array}{rr} 308 & 1 \\ 303 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[380])$ is a degree-$472780800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/380\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 855 = 3^{2} \cdot 5 \cdot 19 \) | 
| $3$ | additive | $6$ | \( 7600 = 2^{4} \cdot 5^{2} \cdot 19 \) | 
| $5$ | additive | $10$ | \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \) | 
| $19$ | nonsplit multiplicative | $20$ | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 68400ga
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 475c1, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-95}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $4$ | 4.2.342000.1 | \(\Z/4\Z\) | not in database | 
| $8$ | 8.0.952679090250000.10 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.42224004000000.82 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | add | ord | ord | ord | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | - | - | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 
| $\mu$-invariant(s) | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.