Show commands: SageMath
Rank
The elliptic curves in class 68400fa have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 68400fa do not have complex multiplication.Modular form 68400.2.a.fa
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 68400fa
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 68400.ds3 | 68400fa1 | \([0, 0, 0, -111675, 14278250]\) | \(3301293169/22800\) | \(1063756800000000\) | \([2]\) | \(294912\) | \(1.7169\) | \(\Gamma_0(N)\)-optimal |
| 68400.ds2 | 68400fa2 | \([0, 0, 0, -183675, -6385750]\) | \(14688124849/8122500\) | \(378963360000000000\) | \([2, 2]\) | \(589824\) | \(2.0635\) | |
| 68400.ds4 | 68400fa3 | \([0, 0, 0, 716325, -50485750]\) | \(871257511151/527800050\) | \(-24625039132800000000\) | \([2]\) | \(1179648\) | \(2.4101\) | |
| 68400.ds1 | 68400fa4 | \([0, 0, 0, -2235675, -1284781750]\) | \(26487576322129/44531250\) | \(2077650000000000000\) | \([2]\) | \(1179648\) | \(2.4101\) |