Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-26963x+1566792\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-26963xz^2+1566792z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-34944075x+73205079750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(37, 769)$ | $0.57560755449532215080221271012$ | $\infty$ |
| $(-188, 94)$ | $0$ | $2$ |
| $(72, -36)$ | $0$ | $2$ |
Integral points
\( \left(-188, 94\right) \), \( \left(-53, 1714\right) \), \( \left(-53, -1661\right) \), \( \left(37, 769\right) \), \( \left(37, -806\right) \), \( \left(72, -36\right) \), \( \left(136, 580\right) \), \( \left(136, -716\right) \), \( \left(163, 1147\right) \), \( \left(163, -1310\right) \), \( \left(397, 7114\right) \), \( \left(397, -7511\right) \), \( \left(772, 20614\right) \), \( \left(772, -21386\right) \), \( \left(4531, 302539\right) \), \( \left(4531, -307070\right) \)
Invariants
| Conductor: | $N$ | = | \( 6825 \) | = | $3 \cdot 5^{2} \cdot 7 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $191009675390625$ | = | $3^{10} \cdot 5^{8} \cdot 7^{2} \cdot 13^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{138742439989609}{12224619225} \) | = | $3^{-10} \cdot 5^{-2} \cdot 7^{-2} \cdot 13^{-2} \cdot 51769^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4805595491221849815778384426$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.67584059290513479427745877599$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9312987645826678$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.782352221746751$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.57560755449532215080221271012$ |
|
| Real period: | $\Omega$ | ≈ | $0.55261027283636034977379069096$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 160 $ = $ ( 2 \cdot 5 )\cdot2^{2}\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.1808664773633013209257970417 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.180866477 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.552610 \cdot 0.575608 \cdot 160}{4^2} \\ & \approx 3.180866477\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 23040 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $10$ | $I_{10}$ | split multiplicative | -1 | 1 | 10 | 10 |
| $5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
| $7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $13$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5460 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 2183 & 5458 \\ 0 & 5459 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 2341 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1683 & 2 \\ 2518 & 5459 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5457 & 4 \\ 5456 & 5 \end{array}\right),\left(\begin{array}{rr} 3641 & 4 \\ 1822 & 9 \end{array}\right),\left(\begin{array}{rr} 2731 & 4 \\ 2 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[5460])$ is a degree-$2434651914240$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5460\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 25 = 5^{2} \) |
| $3$ | split multiplicative | $4$ | \( 2275 = 5^{2} \cdot 7 \cdot 13 \) |
| $5$ | additive | $18$ | \( 91 = 7 \cdot 13 \) |
| $7$ | split multiplicative | $8$ | \( 975 = 3 \cdot 5^{2} \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 525 = 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 6825j
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1365a2, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $4$ | \(\Q(\sqrt{7}, \sqrt{15})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-15}, \sqrt{39})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-7}, \sqrt{65})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | split | add | split | ss | nonsplit | ord | ord | ss | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 4 | 2 | - | 4 | 1,1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | 0 | - | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.