Show commands: SageMath
Rank
The elliptic curves in class 6825.k have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 6825.k do not have complex multiplication.Modular form 6825.2.a.k
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 8 & 2 & 4 & 8 & 4 \\ 8 & 1 & 4 & 2 & 4 & 8 \\ 2 & 4 & 1 & 2 & 4 & 2 \\ 4 & 2 & 2 & 1 & 2 & 4 \\ 8 & 4 & 4 & 2 & 1 & 8 \\ 4 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 6825.k
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 6825.k1 | 6825h5 | \([1, 0, 1, -3416876, -2431168477]\) | \(282352188585428161201/20813369346315\) | \(325208896036171875\) | \([2]\) | \(147456\) | \(2.4106\) | |
| 6825.k2 | 6825h4 | \([1, 0, 1, -1171251, 487791523]\) | \(11372424889583066401/50586128775\) | \(790408262109375\) | \([2]\) | \(73728\) | \(2.0640\) | |
| 6825.k3 | 6825h3 | \([1, 0, 1, -227501, -32758477]\) | \(83339496416030401/18593645841225\) | \(290525716269140625\) | \([2, 2]\) | \(73728\) | \(2.0640\) | |
| 6825.k4 | 6825h2 | \([1, 0, 1, -74376, 7360273]\) | \(2912015927948401/184878500625\) | \(2888726572265625\) | \([2, 2]\) | \(36864\) | \(1.7174\) | |
| 6825.k5 | 6825h1 | \([1, 0, 1, 3749, 485273]\) | \(373092501599/6718359375\) | \(-104974365234375\) | \([2]\) | \(18432\) | \(1.3709\) | \(\Gamma_0(N)\)-optimal |
| 6825.k6 | 6825h6 | \([1, 0, 1, 511874, -201335977]\) | \(949279533867428399/1670570708285115\) | \(-26102667316954921875\) | \([2]\) | \(147456\) | \(2.4106\) |