Properties

Label 6825.g
Number of curves $4$
Conductor $6825$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6825.g have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6825.g do not have complex multiplication.

Modular form 6825.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} - q^{6} + q^{7} + 3 q^{8} + q^{9} - q^{12} - q^{13} - q^{14} - q^{16} - 2 q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 6825.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6825.g1 6825j3 \([1, 0, 0, -421838, 105418917]\) \(531301262949272089/4740474375\) \(74069912109375\) \([2]\) \(46080\) \(1.8271\)  
6825.g2 6825j2 \([1, 0, 0, -26963, 1566792]\) \(138742439989609/12224619225\) \(191009675390625\) \([2, 2]\) \(23040\) \(1.4806\)  
6825.g3 6825j1 \([1, 0, 0, -5838, -144333]\) \(1408317602329/242911305\) \(3795489140625\) \([2]\) \(11520\) \(1.1340\) \(\Gamma_0(N)\)-optimal
6825.g4 6825j4 \([1, 0, 0, 29912, 7311167]\) \(189425802193991/1586486902455\) \(-24788857850859375\) \([2]\) \(46080\) \(1.8271\)