Show commands: SageMath
Rank
The elliptic curves in class 6825.g have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 6825.g do not have complex multiplication.Modular form 6825.2.a.g
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 6825.g
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 6825.g1 | 6825j3 | \([1, 0, 0, -421838, 105418917]\) | \(531301262949272089/4740474375\) | \(74069912109375\) | \([2]\) | \(46080\) | \(1.8271\) | |
| 6825.g2 | 6825j2 | \([1, 0, 0, -26963, 1566792]\) | \(138742439989609/12224619225\) | \(191009675390625\) | \([2, 2]\) | \(23040\) | \(1.4806\) | |
| 6825.g3 | 6825j1 | \([1, 0, 0, -5838, -144333]\) | \(1408317602329/242911305\) | \(3795489140625\) | \([2]\) | \(11520\) | \(1.1340\) | \(\Gamma_0(N)\)-optimal |
| 6825.g4 | 6825j4 | \([1, 0, 0, 29912, 7311167]\) | \(189425802193991/1586486902455\) | \(-24788857850859375\) | \([2]\) | \(46080\) | \(1.8271\) |