Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-27863x+602338\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-27863xz^2+602338z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-27863x+602338\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(22, 0)$ | $0$ | $2$ |
Integral points
\( \left(22, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 67760 \) | = | $2^{4} \cdot 5 \cdot 7 \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $1227672020960000$ | = | $2^{8} \cdot 5^{4} \cdot 7^{8} \cdot 11^{3} $ |
|
| j-invariant: | $j$ | = | \( \frac{7020843884784}{3603000625} \) | = | $2^{4} \cdot 3^{3} \cdot 5^{-4} \cdot 7^{-8} \cdot 17^{3} \cdot 149^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5875395002446659480876645985$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.52596756167177643912735728970$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0046868275068956$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.804369394200909$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.42808457117996474033249994628$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 1\cdot2\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.85616914235992948066499989255 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.856169142 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.428085 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 0.856169142\end{aligned}$$
Modular invariants
Modular form 67760.2.a.y
For more coefficients, see the Downloads section to the right.
| Modular degree: | 184320 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_0^{*}$ | additive | -1 | 4 | 8 | 0 |
| $5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $7$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
| $11$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.24.0.136 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 6160 = 2^{4} \cdot 5 \cdot 7 \cdot 11 \), index $192$, genus $9$, and generators
$\left(\begin{array}{rr} 4941 & 16 \\ 2728 & 325 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 9 & 4 \\ 6036 & 6105 \end{array}\right),\left(\begin{array}{rr} 7 & 4 \\ 68 & 39 \end{array}\right),\left(\begin{array}{rr} 3376 & 5 \\ 2291 & 16 \end{array}\right),\left(\begin{array}{rr} 5281 & 16 \\ 5288 & 129 \end{array}\right),\left(\begin{array}{rr} 8 & 1541 \\ 5389 & 4620 \end{array}\right),\left(\begin{array}{rr} 9 & 16 \\ 320 & 569 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 6145 & 16 \\ 6144 & 17 \end{array}\right),\left(\begin{array}{rr} 3863 & 3866 \\ 3594 & 3535 \end{array}\right)$.
The torsion field $K:=\Q(E[6160])$ is a degree-$1634992128000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6160\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 11 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 13552 = 2^{4} \cdot 7 \cdot 11^{2} \) |
| $7$ | nonsplit multiplicative | $8$ | \( 9680 = 2^{4} \cdot 5 \cdot 11^{2} \) |
| $11$ | additive | $42$ | \( 560 = 2^{4} \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 67760.y
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 16940.c1, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{11}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.0.21296.1 | \(\Z/4\Z\) | not in database |
| $8$ | 8.4.464404086784.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.7256313856.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 5 | 7 | 11 |
|---|---|---|---|---|
| Reduction type | add | nonsplit | nonsplit | add |
| $\lambda$-invariant(s) | - | 0 | 0 | - |
| $\mu$-invariant(s) | - | 0 | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.