Learn more

Refine search


Results (1-50 of 71 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
6762.a1 6762.a \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $0.346545263$ $[1, 1, 0, 66, 876]$ \(y^2+xy=x^3+x^2+66x+876\)
6762.b1 6762.b \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $0.316019079$ $[1, 1, 0, -564, 12384]$ \(y^2+xy=x^3+x^2-564x+12384\)
6762.c1 6762.c \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $0.964146714$ $[1, 1, 0, -2146, 34420]$ \(y^2+xy=x^3+x^2-2146x+34420\)
6762.c2 6762.c \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $1.928293429$ $[1, 1, 0, 2334, 164340]$ \(y^2+xy=x^3+x^2+2334x+164340\)
6762.d1 6762.d \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $0.628831392$ $[1, 1, 0, -782261, 265976985]$ \(y^2+xy=x^3+x^2-782261x+265976985\)
6762.d2 6762.d \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $1.257662784$ $[1, 1, 0, -778831, 268429435]$ \(y^2+xy=x^3+x^2-778831x+268429435\)
6762.e1 6762.e \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -95, -1371]$ \(y^2+xy=x^3+x^2-95x-1371\)
6762.e2 6762.e \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 850, 33972]$ \(y^2+xy=x^3+x^2+850x+33972\)
6762.f1 6762.f \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $1.581952620$ $[1, 1, 0, -17665, -897203]$ \(y^2+xy=x^3+x^2-17665x-897203\)
6762.f2 6762.f \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $3.163905240$ $[1, 1, 0, -25, -39899]$ \(y^2+xy=x^3+x^2-25x-39899\)
6762.g1 6762.g \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -37755, -498147]$ \(y^2+xy=x^3+x^2-37755x-498147\)
6762.g2 6762.g \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -28200, -1834524]$ \(y^2+xy=x^3+x^2-28200x-1834524\)
6762.g3 6762.g \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1740, -29952]$ \(y^2+xy=x^3+x^2-1740x-29952\)
6762.g4 6762.g \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 9285, -55971]$ \(y^2+xy=x^3+x^2+9285x-55971\)
6762.h1 6762.h \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $6.993325357$ $[1, 1, 0, -74308035, 245321703117]$ \(y^2+xy=x^3+x^2-74308035x+245321703117\)
6762.h2 6762.h \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $2.331108452$ $[1, 1, 0, -5487780, -4716747216]$ \(y^2+xy=x^3+x^2-5487780x-4716747216\)
6762.h3 6762.h \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $13.98665071$ $[1, 1, 0, -2054595, 8084758221]$ \(y^2+xy=x^3+x^2-2054595x+8084758221\)
6762.h4 6762.h \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $4.662216905$ $[1, 1, 0, 227580, -294201648]$ \(y^2+xy=x^3+x^2+227580x-294201648\)
6762.i1 6762.i \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 598, -6348]$ \(y^2+xy=x^3+x^2+598x-6348\)
6762.j1 6762.j \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $1.961150340$ $[1, 1, 0, -81, -363]$ \(y^2+xy=x^3+x^2-81x-363\)
6762.k1 6762.k \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -3995, 112550]$ \(y^2+xy+y=x^3-3995x+112550\)
6762.l1 6762.l \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $0.615724427$ $[1, 0, 1, -251445, 48748480]$ \(y^2+xy+y=x^3-251445x+48748480\)
6762.m1 6762.m \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -12262962, -16528997180]$ \(y^2+xy+y=x^3-12262962x-16528997180\)
6762.m2 6762.m \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -722482, -289233724]$ \(y^2+xy+y=x^3-722482x-289233724\)
6762.n1 6762.n \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $1.167824021$ $[1, 0, 1, 29276, 2265218]$ \(y^2+xy+y=x^3+29276x+2265218\)
6762.o1 6762.o \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -4681, 456236]$ \(y^2+xy+y=x^3-4681x+456236\)
6762.o2 6762.o \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 41624, -11527498]$ \(y^2+xy+y=x^3+41624x-11527498\)
6762.p1 6762.p \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -105180, -12121574]$ \(y^2+xy+y=x^3-105180x-12121574\)
6762.p2 6762.p \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 114340, -56025574]$ \(y^2+xy+y=x^3+114340x-56025574\)
6762.q1 6762.q \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $5.208228847$ $[1, 0, 1, -1545, -23474]$ \(y^2+xy+y=x^3-1545x-23474\)
6762.q2 6762.q \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $2.604114423$ $[1, 0, 1, -75, -542]$ \(y^2+xy+y=x^3-75x-542\)
6762.r1 6762.r \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $2.094088991$ $[1, 0, 1, -163980, -22341014]$ \(y^2+xy+y=x^3-163980x-22341014\)
6762.r2 6762.r \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $1.047044495$ $[1, 0, 1, 16340, -1856662]$ \(y^2+xy+y=x^3+16340x-1856662\)
6762.s1 6762.s \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -15965, -777724]$ \(y^2+xy+y=x^3-15965x-777724\)
6762.s2 6762.s \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -15895, -784864]$ \(y^2+xy+y=x^3-15895x-784864\)
6762.t1 6762.t \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $3.262690023$ $[1, 0, 1, 3208, -290818]$ \(y^2+xy+y=x^3+3208x-290818\)
6762.u1 6762.u \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $0.594908560$ $[1, 0, 1, -12, -38]$ \(y^2+xy+y=x^3-12x-38\)
6762.v1 6762.v \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -3554, 20234]$ \(y^2+xy+y=x^3-3554x+20234\)
6762.v2 6762.v \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 856, 2594]$ \(y^2+xy+y=x^3+856x+2594\)
6762.w1 6762.w \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -50, -28519]$ \(y^2+xy+y=x^3+x^2-50x-28519\)
6762.x1 6762.x \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -197, -3823]$ \(y^2+xy+y=x^3+x^2-197x-3823\)
6762.y1 6762.y \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 445703, -76671673]$ \(y^2+xy+y=x^3+x^2+445703x-76671673\)
6762.z1 6762.z \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -336533, -75283405]$ \(y^2+xy+y=x^3+x^2-336533x-75283405\)
6762.z2 6762.z \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -20973, -1189917]$ \(y^2+xy+y=x^3+x^2-20973x-1189917\)
6762.ba1 6762.ba \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -43, -127]$ \(y^2+xy+y=x^3+x^2-43x-127\)
6762.bb1 6762.bb \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $0.164298635$ $[1, 1, 1, -5195, 1255673]$ \(y^2+xy+y=x^3+x^2-5195x+1255673\)
6762.bc1 6762.bc \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -8763602, 9981900641]$ \(y^2+xy+y=x^3+x^2-8763602x+9981900641\)
6762.bc2 6762.bc \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -626662, 107865953]$ \(y^2+xy+y=x^3+x^2-626662x+107865953\)
6762.bc3 6762.bc \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -547772, 155767961]$ \(y^2+xy+y=x^3+x^2-547772x+155767961\)
6762.bc4 6762.bc \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -29352, 3145113]$ \(y^2+xy+y=x^3+x^2-29352x+3145113\)
Next   Download to