Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-606109x+181479107\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-606109xz^2+181479107z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-785516643x+8469445777758\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(21289/49, 79757/343)$ | $6.1320406863187611925986046466$ | $\infty$ |
| $(-899, 449)$ | $0$ | $2$ |
| $(441, -221)$ | $0$ | $2$ |
Integral points
\( \left(-899, 449\right) \), \( \left(441, -221\right) \)
Invariants
| Conductor: | $N$ | = | \( 67335 \) | = | $3 \cdot 5 \cdot 67^{2}$ |
|
| Discriminant: | $\Delta$ | = | $14837436135270225$ | = | $3^{8} \cdot 5^{2} \cdot 67^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{272223782641}{164025} \) | = | $3^{-8} \cdot 5^{-2} \cdot 6481^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0466423278926118971000555617$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.055703981802871132734980436485$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.038972011651739$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.637584476241964$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.1320406863187611925986046466$ |
|
| Real period: | $\Omega$ | ≈ | $0.39002405067182785554351278813$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{3}\cdot2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $9.5665733894499943028609660690 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 9.566573389 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.390024 \cdot 6.132041 \cdot 64}{4^2} \\ & \approx 9.566573389\end{aligned}$$
Modular invariants
Modular form 67335.2.a.h
For more coefficients, see the Downloads section to the right.
| Modular degree: | 591360 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
| $5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $67$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 8.48.0.123 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 16080 = 2^{4} \cdot 3 \cdot 5 \cdot 67 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 12061 & 6968 \\ 7370 & 1877 \end{array}\right),\left(\begin{array}{rr} 2879 & 0 \\ 0 & 16079 \end{array}\right),\left(\begin{array}{rr} 1 & 13936 \\ 0 & 4021 \end{array}\right),\left(\begin{array}{rr} 6969 & 6968 \\ 14338 & 5495 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 10721 & 6968 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 4 & 65 \end{array}\right),\left(\begin{array}{rr} 16065 & 16 \\ 16064 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[16080])$ is a degree-$14632011694080$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/16080\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 4489 = 67^{2} \) |
| $3$ | split multiplicative | $4$ | \( 22445 = 5 \cdot 67^{2} \) |
| $5$ | nonsplit multiplicative | $6$ | \( 13467 = 3 \cdot 67^{2} \) |
| $67$ | additive | $2246$ | \( 15 = 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 67335.h
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 15.a2, its twist by $-67$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{67}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{5}, \sqrt{-67})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-5}, \sqrt{-67})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{10}, \sqrt{67})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.3224179360000.5 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.1320623865856.2 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.80604484000000.5 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 67 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | split | nonsplit | ss | ord | ord | ord | ord | ss | ord | ss | ord | ord | ord | ord | add |
| $\lambda$-invariant(s) | 2 | 4 | 1 | 1,1 | 1 | 3 | 1 | 3 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 | - |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | - |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.