Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-14x+24\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-14xz^2+24z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1161x+14040\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(4, 4)$ | $0.99310916145980245179387963762$ | $\infty$ |
$(2, 0)$ | $0$ | $2$ |
$(3, 0)$ | $0$ | $2$ |
Integral points
\( \left(-4, 0\right) \), \((-1,\pm 6)\), \( \left(2, 0\right) \), \( \left(3, 0\right) \), \((4,\pm 4)\), \((10,\pm 28)\)
Invariants
Conductor: | $N$ | = | \( 672 \) | = | $2^{5} \cdot 3 \cdot 7$ |
|
Discriminant: | $\Delta$ | = | $28224$ | = | $2^{6} \cdot 3^{2} \cdot 7^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{5088448}{441} \) | = | $2^{6} \cdot 3^{-2} \cdot 7^{-2} \cdot 43^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.40520681826668437476326499696$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.75178040854665702947188105769$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9666197140470211$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.0108431168992458$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.99310916145980245179387963762$ |
|
Real period: | $\Omega$ | ≈ | $3.6459594936737955688656412411$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $1.8104178877393945197070289466 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.810417888 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 3.645959 \cdot 0.993109 \cdot 8}{4^2} \\ & \approx 1.810417888\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 64 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III$ | additive | -1 | 5 | 6 | 0 |
$3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 4.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 168 = 2^{3} \cdot 3 \cdot 7 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 45 & 2 \\ 160 & 163 \end{array}\right),\left(\begin{array}{rr} 165 & 4 \\ 164 & 5 \end{array}\right),\left(\begin{array}{rr} 85 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 113 & 4 \\ 58 & 9 \end{array}\right),\left(\begin{array}{rr} 51 & 2 \\ 22 & 167 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[168])$ is a degree-$3096576$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/168\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 1 \) |
$3$ | nonsplit multiplicative | $4$ | \( 224 = 2^{5} \cdot 7 \) |
$7$ | split multiplicative | $8$ | \( 96 = 2^{5} \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 672e
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{7}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-6}, \sqrt{-7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{6})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.12745506816.7 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.4441101041664.10 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.27874423406592.40 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | ord | split | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | - | 5 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.