Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-14945x-708225\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-14945xz^2-708225z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1210572x-512664336\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-71, 0)$ | $0$ | $2$ |
Integral points
\( \left(-71, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 6720 \) | = | $2^{6} \cdot 3 \cdot 5 \cdot 7$ |
|
Discriminant: | $\Delta$ | = | $928972800$ | = | $2^{16} \cdot 3^{4} \cdot 5^{2} \cdot 7 $ |
|
j-invariant: | $j$ | = | \( \frac{5633270409316}{14175} \) | = | $2^{2} \cdot 3^{-4} \cdot 5^{-2} \cdot 7^{-1} \cdot 11^{3} \cdot 1019^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.95904721772674858630550556457$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.034850976980154840415862735959$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9761022274426737$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.589899556629106$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.43179063500889201933282227730$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2^{2}\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $3.4543250800711361546625782184 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 3.454325080 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.431791 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 3.454325080\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 8192 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{6}^{*}$ | additive | 1 | 6 | 16 | 0 |
$3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$7$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.7 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 168 = 2^{3} \cdot 3 \cdot 7 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 162 & 163 \end{array}\right),\left(\begin{array}{rr} 80 & 3 \\ 29 & 2 \end{array}\right),\left(\begin{array}{rr} 161 & 8 \\ 160 & 9 \end{array}\right),\left(\begin{array}{rr} 113 & 8 \\ 116 & 33 \end{array}\right),\left(\begin{array}{rr} 24 & 113 \\ 49 & 96 \end{array}\right),\left(\begin{array}{rr} 101 & 102 \\ 134 & 53 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[168])$ is a degree-$3096576$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/168\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 7 \) |
$3$ | split multiplicative | $4$ | \( 2240 = 2^{6} \cdot 5 \cdot 7 \) |
$5$ | split multiplicative | $6$ | \( 1344 = 2^{6} \cdot 3 \cdot 7 \) |
$7$ | split multiplicative | $8$ | \( 960 = 2^{6} \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 6720.cm
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 840.c1, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{7}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-14}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.4818903040000.12 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.162570240000.16 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.624529833984.7 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 |
---|---|---|---|---|
Reduction type | add | split | split | split |
$\lambda$-invariant(s) | - | 3 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.