Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3-x^2-1565223x+730389729\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3-x^2z-1565223xz^2+730389729z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-2028529440x+34052720856336\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 67081 \) | = | $7^{2} \cdot 37^{2}$ |
|
Discriminant: | $\Delta$ | = | $15289868725151013973$ | = | $7^{6} \cdot 37^{9} $ |
|
j-invariant: | $j$ | = | \( \frac{1404928000}{50653} \) | = | $2^{15} \cdot 5^{3} \cdot 7^{3} \cdot 37^{-3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4511894460394173840458865943$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.32722458481035149069083761294$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9727427413985318$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.895258559289064$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.21966796570887882914509699787$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.87867186283551531658038799148 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.878671863 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.219668 \cdot 1.000000 \cdot 4}{1^2} \\ & \approx 0.878671863\end{aligned}$$
Modular invariants
Modular form 67081.2.a.g
For more coefficients, see the Downloads section to the right.
Modular degree: | 1034208 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$7$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$37$ | $4$ | $I_{3}^{*}$ | additive | 1 | 2 | 9 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3Cs | 9.36.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 13986 = 2 \cdot 3^{3} \cdot 7 \cdot 37 \), index $1296$, genus $43$, and generators
$\left(\begin{array}{rr} 7991 & 0 \\ 0 & 13985 \end{array}\right),\left(\begin{array}{rr} 8693 & 7938 \\ 525 & 7181 \end{array}\right),\left(\begin{array}{rr} 11789 & 2842 \\ 2982 & 9031 \end{array}\right),\left(\begin{array}{rr} 43 & 30 \\ 9696 & 10993 \end{array}\right),\left(\begin{array}{rr} 13933 & 54 \\ 13932 & 55 \end{array}\right),\left(\begin{array}{rr} 1 & 27 \\ 27 & 730 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 19 & 54 \\ 6570 & 6895 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[13986])$ is a degree-$5355972937728$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/13986\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$7$ | additive | $26$ | \( 1369 = 37^{2} \) |
$37$ | additive | $722$ | \( 49 = 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 67081a
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 37b1, its twist by $-259$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{777}) \) | \(\Z/3\Z\) | not in database |
$2$ | \(\Q(\sqrt{-259}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.3.148.1 | \(\Z/2\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{-259})\) | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$6$ | 6.6.810448.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.6.7505558928.1 | \(\Z/6\Z\) | not in database |
$6$ | 6.0.277983664.2 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.6.102608206965030980546736255777553320119059737.2 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.9809248786704758132509519982558979.1 | \(\Z/9\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ss | ord | ss | add | ord | ord | ord | ord | ord | ord | ord | add | ord | ord | ord |
$\lambda$-invariant(s) | ? | 0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 |
$\mu$-invariant(s) | ? | 0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 |
An entry ? indicates that the invariants have not yet been computed.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.