Properties

Label 67032cf
Number of curves $2$
Conductor $67032$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cf1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 67032cf have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 67032cf do not have complex multiplication.

Modular form 67032.2.a.cf

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} + 6 q^{11} + 2 q^{13} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 67032cf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
67032.ck1 67032cf1 \([0, 0, 0, -2185328019, -39309909712738]\) \(13141891860831409148932/4237307541832617\) \(372139449699357482361504768\) \([2]\) \(36126720\) \(4.0728\) \(\Gamma_0(N)\)-optimal
67032.ck2 67032cf2 \([0, 0, 0, -1888852539, -50359372967050]\) \(-4242991426585187031506/3781894171664380023\) \(-664285989142859752330446403584\) \([2]\) \(72253440\) \(4.4194\)