Show commands: SageMath
Rank
The elliptic curves in class 66880y have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 66880y do not have complex multiplication.Modular form 66880.2.a.y
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 66880y
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
66880.dd2 | 66880y1 | \([0, -1, 0, -33505, 2371425]\) | \(15868125221689/2528900\) | \(662935961600\) | \([2]\) | \(165888\) | \(1.2784\) | \(\Gamma_0(N)\)-optimal |
66880.dd3 | 66880y2 | \([0, -1, 0, -30305, 2839265]\) | \(-11741970526489/6395335210\) | \(-1676498753290240\) | \([2]\) | \(331776\) | \(1.6250\) | |
66880.dd1 | 66880y3 | \([0, -1, 0, -79265, -5264863]\) | \(210103680895849/75449000000\) | \(19778502656000000\) | \([2]\) | \(497664\) | \(1.8277\) | |
66880.dd4 | 66880y4 | \([0, -1, 0, 240735, -37328863]\) | \(5885721311824151/5692551601000\) | \(-1492268246892544000\) | \([2]\) | \(995328\) | \(2.1743\) |