Properties

Label 66880y
Number of curves $4$
Conductor $66880$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 66880y have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 - T\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 66880y do not have complex multiplication.

Modular form 66880.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + q^{5} - 4 q^{7} + q^{9} - q^{11} - 2 q^{13} + 2 q^{15} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 66880y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
66880.dd2 66880y1 \([0, -1, 0, -33505, 2371425]\) \(15868125221689/2528900\) \(662935961600\) \([2]\) \(165888\) \(1.2784\) \(\Gamma_0(N)\)-optimal
66880.dd3 66880y2 \([0, -1, 0, -30305, 2839265]\) \(-11741970526489/6395335210\) \(-1676498753290240\) \([2]\) \(331776\) \(1.6250\)  
66880.dd1 66880y3 \([0, -1, 0, -79265, -5264863]\) \(210103680895849/75449000000\) \(19778502656000000\) \([2]\) \(497664\) \(1.8277\)  
66880.dd4 66880y4 \([0, -1, 0, 240735, -37328863]\) \(5885721311824151/5692551601000\) \(-1492268246892544000\) \([2]\) \(995328\) \(2.1743\)