Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-1844x+9225456\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-1844xz^2+9225456z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-149391x+6725805570\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(40, 3036)$ | $0.39234241104365986088125744025$ | $\infty$ |
$(-213, 0)$ | $0$ | $2$ |
Integral points
\( \left(-213, 0\right) \), \((-164,\pm 2268)\), \((40,\pm 3036)\), \((316,\pm 6348)\), \((799,\pm 22770)\)
Invariants
Conductor: | $N$ | = | \( 66792 \) | = | $2^{3} \cdot 3 \cdot 11^{2} \cdot 23$ |
|
Discriminant: | $\Delta$ | = | $-36771603215567616$ | = | $-1 \cdot 2^{8} \cdot 3^{6} \cdot 11^{3} \cdot 23^{6} $ |
|
j-invariant: | $j$ | = | \( -\frac{2036216432}{107918163081} \) | = | $-1 \cdot 2^{4} \cdot 3^{-6} \cdot 23^{-6} \cdot 503^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8575171112837685724178591765$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.79594517271087906345755186770$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0984513022758697$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.1044957610875725$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.39234241104365986088125744025$ |
|
Real period: | $\Omega$ | ≈ | $0.29171069305409663950299885443$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 144 $ = $ 2\cdot( 2 \cdot 3 )\cdot2\cdot( 2 \cdot 3 ) $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.1202171590422059808531726551 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.120217159 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.291711 \cdot 0.392342 \cdot 144}{2^2} \\ & \approx 4.120217159\end{aligned}$$
Modular invariants
Modular form 66792.2.a.bb
For more coefficients, see the Downloads section to the right.
Modular degree: | 635904 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{1}^{*}$ | additive | 1 | 3 | 8 | 0 |
$3$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$11$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
$23$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1012 = 2^{2} \cdot 11 \cdot 23 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 96 & 1 \\ 735 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 761 & 254 \\ 252 & 759 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 925 & 4 \\ 838 & 9 \end{array}\right),\left(\begin{array}{rr} 1009 & 4 \\ 1008 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[1012])$ is a degree-$28212940800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1012\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 11 \) |
$3$ | split multiplicative | $4$ | \( 968 = 2^{3} \cdot 11^{2} \) |
$11$ | additive | $42$ | \( 552 = 2^{3} \cdot 3 \cdot 23 \) |
$23$ | split multiplicative | $24$ | \( 2904 = 2^{3} \cdot 3 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 66792k
consists of 2 curves linked by isogenies of
degree 2.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-11}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.11265584.1 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.126913382861056.7 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.19432862025984.14 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.3967389600768.6 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | ord | ord | add | ord | ord | ord | split | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 2 | 1 | 1 | - | 1 | 1 | 1 | 2 | 1 | 1,1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.