Properties

Label 66792.v
Number of curves $4$
Conductor $66792$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("v1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 66792.v have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 66792.v do not have complex multiplication.

Modular form 66792.2.a.v

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} + 4 q^{7} + q^{9} + 2 q^{13} - 2 q^{15} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 66792.v

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
66792.v1 66792i4 \([0, -1, 0, -91032, -8915652]\) \(45989074372/7555707\) \(13706645348994048\) \([2]\) \(491520\) \(1.8180\)  
66792.v2 66792i2 \([0, -1, 0, -25692, 1460340]\) \(4135597648/385641\) \(174895758233856\) \([2, 2]\) \(245760\) \(1.4714\)  
66792.v3 66792i1 \([0, -1, 0, -25087, 1537780]\) \(61604313088/621\) \(17602230096\) \([2]\) \(122880\) \(1.1249\) \(\Gamma_0(N)\)-optimal
66792.v4 66792i3 \([0, -1, 0, 29968, 6870492]\) \(1640689628/12223143\) \(-22173740478692352\) \([2]\) \(491520\) \(1.8180\)