Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-3066x+60596\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-3066xz^2+60596z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-49059x+3829086\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(100, 814)$ | $0.93045512141037663412764110129$ | $\infty$ |
| $(19, 85)$ | $2.0694059589599036127022150600$ | $\infty$ |
Integral points
\( \left(-28, 366\right) \), \( \left(-28, -338\right) \), \( \left(19, 85\right) \), \( \left(19, -104\right) \), \( \left(41, 30\right) \), \( \left(41, -71\right) \), \( \left(100, 814\right) \), \( \left(100, -914\right) \)
Invariants
| Conductor: | $N$ | = | \( 66654 \) | = | $2 \cdot 3^{2} \cdot 7 \cdot 23^{2}$ |
|
| Discriminant: | $\Delta$ | = | $298541666304$ | = | $2^{12} \cdot 3^{9} \cdot 7 \cdot 23^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{306177219}{28672} \) | = | $2^{-12} \cdot 3^{3} \cdot 7^{-1} \cdot 23 \cdot 79^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.94022703592994518947439733623$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.40631454989266202753982873010$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8936155542650679$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.2139465935634317$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.7752159699751209184170189766$ |
|
| Real period: | $\Omega$ | ≈ | $0.94523552301294375026416664931$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot2\cdot1\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $6.7119887833614546819538783619 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.711988783 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.945236 \cdot 1.775216 \cdot 4}{1^2} \\ & \approx 6.711988783\end{aligned}$$
Modular invariants
Modular form 66654.2.a.f
For more coefficients, see the Downloads section to the right.
| Modular degree: | 138240 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
| $3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
| $7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $23$ | $1$ | $II$ | additive | -1 | 2 | 2 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 961 & 6 \\ 960 & 7 \end{array}\right),\left(\begin{array}{rr} 843 & 2 \\ 556 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 804 & 155 \\ 641 & 786 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 829 & 6 \\ 555 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[966])$ is a degree-$9694992384$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/966\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 11109 = 3 \cdot 7 \cdot 23^{2} \) |
| $3$ | additive | $2$ | \( 3703 = 7 \cdot 23^{2} \) |
| $7$ | nonsplit multiplicative | $8$ | \( 9522 = 2 \cdot 3^{2} \cdot 23^{2} \) |
| $23$ | additive | $112$ | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 66654c
consists of 2 curves linked by isogenies of
degree 3.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{69}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.3.11109.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.6.2591607501.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.11265717806847.1 | \(\Z/3\Z\) | not in database |
| $6$ | 6.6.8515281789.1 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.6.3888845636616484116206638431509514417725558784.2 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.630543705820882873685164089132882684873543.2 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | ord | nonsplit | ord | ord | ord | ord | add | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 2 | - | 2 | 2 | 2 | 2 | 4 | 2 | - | 2 | 4 | 2 | 2 | 2 | 2 |
| $\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.