Show commands: SageMath
Rank
The elliptic curves in class 663a have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 663a do not have complex multiplication.Modular form 663.2.a.a
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 663a
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 663.c2 | 663a1 | \([1, 1, 0, -262, -1745]\) | \(2000852317801/2094417\) | \(2094417\) | \([2]\) | \(288\) | \(0.13017\) | \(\Gamma_0(N)\)-optimal |
| 663.c1 | 663a2 | \([1, 1, 0, -327, -900]\) | \(3885442650361/1996623837\) | \(1996623837\) | \([2]\) | \(576\) | \(0.47674\) |