Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-1345908x-1164436812\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-1345908xz^2-1164436812z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-109018575x-848547380250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(11591493/484, 39417543969/10648)$ | $14.331264533350990628931231642$ | $\infty$ |
| $(1463, 0)$ | $0$ | $2$ |
Integral points
\( \left(1463, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 66300 \) | = | $2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $-429266601562500000000$ | = | $-1 \cdot 2^{8} \cdot 3^{2} \cdot 5^{18} \cdot 13^{2} \cdot 17^{2} $ |
|
| j-invariant: | $j$ | = | \( -\frac{67407802159923664}{107316650390625} \) | = | $-1 \cdot 2^{4} \cdot 3^{-2} \cdot 5^{-12} \cdot 13^{-2} \cdot 17^{-2} \cdot 373^{3} \cdot 433^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6502430693972108735008806691$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.3834259928068638132556795882$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9456866456199285$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.97871145250841$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $14.331264533350990628931231642$ |
|
| Real period: | $\Omega$ | ≈ | $0.066395804222498916809863388168$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 1\cdot2\cdot2^{2}\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.6122866737377173775244999980 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.612286674 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.066396 \cdot 14.331265 \cdot 32}{2^2} \\ & \approx 7.612286674\end{aligned}$$
Modular invariants
Modular form 66300.2.a.bc
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2211840 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
| $3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $5$ | $4$ | $I_{12}^{*}$ | additive | 1 | 2 | 18 | 12 |
| $13$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $17$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.5 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 26520 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 13261 & 8 \\ 2 & 17 \end{array}\right),\left(\begin{array}{rr} 26513 & 8 \\ 26512 & 9 \end{array}\right),\left(\begin{array}{rr} 17681 & 8 \\ 8842 & 17 \end{array}\right),\left(\begin{array}{rr} 5303 & 26516 \\ 0 & 26519 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 8 \\ 48 & 77 \end{array}\right),\left(\begin{array}{rr} 19891 & 4 \\ 23207 & 9 \end{array}\right),\left(\begin{array}{rr} 3 & 8 \\ 10 & 27 \end{array}\right),\left(\begin{array}{rr} 12481 & 8 \\ 24962 & 17 \end{array}\right),\left(\begin{array}{rr} 24481 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[26520])$ is a degree-$1513657875824640$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/26520\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 25 = 5^{2} \) |
| $3$ | split multiplicative | $4$ | \( 22100 = 2^{2} \cdot 5^{2} \cdot 13 \cdot 17 \) |
| $5$ | additive | $18$ | \( 2652 = 2^{2} \cdot 3 \cdot 13 \cdot 17 \) |
| $13$ | split multiplicative | $14$ | \( 5100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 17 \) |
| $17$ | split multiplicative | $18$ | \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 66300bf
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 13260a2, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.2.67600.1 | \(\Z/4\Z\) | not in database |
| $8$ | 8.0.73116160000.6 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | add | ord | ord | split | split | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 2 | - | 1 | 1 | 2 | 2 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.