Show commands: SageMath
Rank
The elliptic curves in class 66300.q have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 66300.q do not have complex multiplication.Modular form 66300.2.a.q
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 66300.q
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 66300.q1 | 66300b2 | \([0, -1, 0, -115708, 15187912]\) | \(42830942866000/146523\) | \(586092000000\) | \([2]\) | \(276480\) | \(1.4785\) | |
| 66300.q2 | 66300b1 | \([0, -1, 0, -7333, 232162]\) | \(174456832000/9771957\) | \(2442989250000\) | \([2]\) | \(138240\) | \(1.1320\) | \(\Gamma_0(N)\)-optimal |