Properties

Label 66300.bb
Number of curves $2$
Conductor $66300$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 66300.bb have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(13\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 66300.bb do not have complex multiplication.

Modular form 66300.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{7} + q^{9} - 2 q^{11} + q^{13} + q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 66300.bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
66300.bb1 66300bh1 \([0, 1, 0, -61551633, -123448272012]\) \(103157889656032577929216/33372791198022770325\) \(8343197799505692581250000\) \([2]\) \(11796480\) \(3.4854\) \(\Gamma_0(N)\)-optimal
66300.bb2 66300bh2 \([0, 1, 0, 175464492, -843977292012]\) \(149359017613560984774704/163373427681970325625\) \(-653493710727881302500000000\) \([2]\) \(23592960\) \(3.8319\)